1.Identification of synthetic lethality of PLK1 inhibition and microtubule-destabilizing drugs.
Hugle M1, Belz K1, Fulda S1,2,3. Cell Death Differ. 2015 Dec;22(12):1946-56. doi: 10.1038/cdd.2015.59. Epub 2015 May 29.
Polo-like kinase 1 (PLK1) is frequently overexpressed in cancer, which correlates with poor prognosis. Therefore, we investigated PLK1 as therapeutic target using rhabdomyosarcoma (RMS) as a model. Here, we identify a novel synthetic lethal interaction of PLK1 inhibitors and microtubule-destabilizing drugs in preclinical RMS models and elucidate the underlying molecular mechanisms of this synergism. PLK1 inhibitors (i.e., BI 2536 and BI 6727) synergistically induce apoptosis together with microtubule-destabilizing drugs (i.e., vincristine (VCR), vinblastine (VBL) and vinorelbine (VNR)) in several RMS cell lines (combination index <0.9) including a patient-derived primary RMS culture. Importantly, PLK1 inhibitors and VCR cooperate to significantly suppress RMS growth in two in vivo models, including a mouse xenograft model, without causing additive toxicity. In addition, no toxicity was observed in non-malignant fibroblast or myoblast cultures.
2.The Catalytic Subunit of DNA-Dependent Protein Kinase Coordinates with Polo-Like Kinase 1 to Facilitate Mitotic Entry.
Lee KJ1, Shang ZF2, Lin YF1, Sun J1, Morotomi-Yano K1, Saha D1, Chen BP3. Neoplasia. 2015 Apr;17(4):329-38. doi: 10.1016/j.neo.2015.02.004.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the key regulator of the non-homologous end joining pathway of DNA double-strand break repair. We have previously reported that DNA-PKcs is required for maintaining chromosomal stability and mitosis progression. Our further investigations reveal that deficiency in DNA-PKcs activity caused a delay in mitotic entry due to dysregulation of cyclin-dependent kinase 1 (Cdk1), the key driving force for cell cycle progression through G2/M transition. Timely activation of Cdk1 requires polo-like kinase 1 (Plk1), which affects modulators of Cdk1. We found that DNA-PKcs physically interacts with Plk1 and could facilitate Plk1 activation both in vitro and in vivo. Further, DNA-PKcs-deficient cells are highly sensitive to Plk1 inhibitor BI2536, suggesting that the coordination between DNA-PKcs and Plk1 is not only crucial to ensure normal cell cycle progression through G2/M phases but also required for cellular resistance to mitotic stress.
3.Differential Cellular Effects of Plk1 Inhibitors Targeting the ATP-binding Domain or Polo-box Domain.
Shin SB1, Woo SU1, Yim H1. J Cell Physiol. 2015 Dec;230(12):3057-67. doi: 10.1002/jcp.25042.
The expression of polo-like kinase 1 (Plk1) correlates with malignancy and is thus recognized as a target for cancer therapy. In addition to the development of ATP-competitive Plk1 inhibitors, the polo-box domain (PBD), a unique functional domain of PLKs, is being targeted to develop Plk1-specific inhibitors. However, the action mechanisms of these two classes of Plk1 inhibitors have not been thoroughly evaluated. Here, we evaluate the differences in cellular effects of ATP-binding domain inhibitors (BI 2536, GSK 461364) and PBD inhibitors (poloxin, thymoquinone) to determine their mechanisms of Plk1 inhibition. Our data show that BI 2536 and GSK461364 increased the population of cells in the G2/M phase compared with controls, while treatment with poloxin and thymoquinone increased cell population in the S phase as well as in G2/M, in a p53-independent manner. The population of cells staining positively for p-Histone H3 and MPM2, mitotic index, was increased by treatment with BI 2536 or GSK461364, but not by treatment with poloxin or thymoquinone.
4.BRD4 Structure-Activity Relationships of Dual PLK1 Kinase/BRD4 Bromodomain Inhibitor BI-2536.
Chen L1, Yap JL1, Yoshioka M2, Lanning ME1, Fountain RN1, Raje M1, Scheenstra JA1, Strovel JW2, Fletcher S3. ACS Med Chem Lett. 2015 May 18;6(7):764-9. doi: 10.1021/acsmedchemlett.5b00084. eCollection 2015.
A focused library of analogues of the dual PLK1 kinase/BRD4 bromodomain inhibitor BI-2536 was prepared and then analyzed for BRD4 and PLK1 inhibitory activities. Particularly, replacement of the cyclopentyl group with a 3-bromobenzyl moiety afforded the most potent BRD4 inhibitor of the series (39j) with a K i = 8.7 nM, which was equipotent against PLK1. The superior affinity of 39j over the parental compound to BRD4 possibly derives from improved interactions with the WPF shelf. Meanwhile, substitution of the pyrimidine NH with an oxygen atom reversed the PLK1/BRD4 selectivity to convert BI-2536 into a BRD4-selective inhibitor, likely owing to the loss of a critical hydrogen bond in PLK1. We believe further fine-tuning will furnish a BRD4 "magic bullet" or an even more potent PLK1/BRD4 dual inhibitor toward the expansion and improved efficacy of the chemotherapy arsenal.