VH032

 CAS No.: 1448188-62-2  Cat No.: BP-200036 4.5  

VH032 is a potent and selective bromodomain and extraterminal domain (BET) inhibitor. It is a VHL ligand for PROTAC and potent, small molecule inhibitor of the VHL/HIF-1α interaction with Kd of 185 nM.

VH032

Structure of 1448188-62-2

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
Ligand for E3 Ligase
Molecular Formula
C24H32N4O4S
Molecular Weight
472.60

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • mg to g scale for early stage;
  • CDMO and CMO support.
  • 24/7 customer service;
  • 100% quality assurance;
  • Efficient global delivery;
  • Over 95% customer satisfaction.
Popular Publications Citing BOC Sciences Products
IUPACName
(2S,4R)-1-[(2S)-2-acetamido-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide
Synonyms
N-Acetyl-3-Methyl-L-Valyl-(4r)-4-Hydroxy-N-[4-(4-Methyl-1,3-Thiazol-5-Yl)benzyl]-L-Prolinamide; VH-032
InChI Key
GFVIEZBZIUKYOG-SVFBPWRDSA-N
InChI
InChI=1S/C24H32N4O4S/c1-14-20(33-13-26-14)17-8-6-16(7-9-17)11-25-22(31)19-10-18(30)12-28(19)23(32)21(24(3,4)5)27-15(2)29/h6-9,13,18-19,21,30H,10-12H2,1-5H3,(H,25,31)(H,27,29)/t18-,19+,21-/m1/s1
Canonical SMILES
CC1=C(SC=N1)C2=CC=C(C=C2)CNC(=O)C3CC(CN3C(=O)C(C(C)(C)C)NC(=O)C)O
1. Feasible Column Chromatography-Free, Multi-Gram Scale Synthetic Process of VH032 Amine, Which Could Enable Rapid PROTAC Library Construction
Wei Yan, Bo-Syong Pan, Jingwei Shao, Hui-Kuan Lin, Hong-Yu Li ACS Omega. 2022 Jul 19;7(30):26015-26020.doi: 10.1021/acsomega.2c00245.eCollection 2022 Aug 2.
PROTACs represent a promising modality that has gained significant attention for the treatment of cancer, Alzheimer's disease, and so forth. Due to limited structural information of the POI-PROTAC-E3 ligase ternary complex, the discovery of active PROTACs relies on the screening of diversity-oriented PROTAC libraries. VH032 amine is a key building block for the synthesis of VHL E3 ligase-based PROTACs. To construct VHL PROTAC libraries rapidly, the availability of VH032 amine is crucial. In this paper, we report a column chromatography-free process which enables the production of 42.5 g of VH032 amine hydrochloride in 65% overall yield with 97% purity in a week.
2. Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel-Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay
Wenwei Lin, Yongtao Li, Lei Yang, Taosheng Chen ACS Omega. 2020 Dec 29;6(1):680-695.doi: 10.1021/acsomega.0c05221.eCollection 2021 Jan 12.
The von Hippel-Lindau (VHL) tumor suppressor associates with transcription factors elongin-C and elongin-B to form the VHL-elongin-C-elongin-B protein complex and carry out its functions, such as degradation of hypoxia-inducible factors. VHL ligands are used not only to modulate hypoxia-signaling pathways and potentially treat chronic anemia or ischemia but also to form bivalent ligands as proteolysis-targeting chimeras to degrade proteins for potential therapeutic applications. Sensitive and selective VHL-based binding assays are critical for identifying and characterizing VHL ligands with high-throughput screening approaches. VHL ligand-binding assays, such as isothermal titration calorimetry, surface plasmon resonance, and fluorescence polarization assays, are reported but with limitations. Isothermal titration calorimetry requires higher protein concentrations with a lower throughput than fluorescence-based assays do. Surface plasmon resonance requires protein immobilization, which introduces variation and is not suitable for testing a large number of ligands. Fluorescence polarization can be sensitive with high-throughput capability but is susceptible to assay interference, and small-molecule-based fluorescent probes are not available. We developed the first small-molecule-based high-affinity VHL fluorescent probe BODIPY FL VH032 (5), with a K d of 3.01 nM, for a time-resolved fluorescence resonance energy-transfer assay. This new assay is sensitive, selective, resistant to assay interference, and capable of characterizing VHL ligands with a wide range of affinities. It is also suitable for VHL ligand identification and characterization with high-throughput screening.
3. Understanding and Improving the Membrane Permeability of VH032-Based PROTACs
Victoria G Klein, Chad E Townsend, Andrea Testa, Michael Zengerle, Chiara Maniaci, Scott J Hughes, Kwok-Ho Chan, Alessio Ciulli, R Scott Lokey ACS Med Chem Lett. 2020 Jul 30;11(9):1732-1738.doi: 10.1021/acsmedchemlett.0c00265.eCollection 2020 Sep 10.
Proteolysis targeting chimeras (PROTACs) are catalytic heterobifunctional molecules that can selectively degrade a protein of interest by recruiting a ubiquitin E3 ligase to the target, leading to its ubiquitylation and degradation by the proteasome. Most degraders lie outside the chemical space associated with most membrane-permeable drugs. Although many PROTACs have been described with potent activity in cells, our understanding of the relationship between structure and permeability in these compounds remains limited. Here, we describe a label-free method for assessing the permeability of several VH032-based PROTACs and their components by combining a parallel artificial membrane permeability assay (PAMPA) and a lipophilic permeability efficiency (LPE) metric. Our results show that the combination of these two cell-free membrane permeability assays provides new insight into PROTAC structure-permeability relationships and offers a conceptual framework for predicting the physicochemical properties of PROTACs in order to better inform the design of more permeable and more effective degraders.

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket