1-Azido-4,7,10-trioxa-13-tridecanamine - CAS 1162336-72-2

Azido-C1-PEG3-C3-NH2 is a polyethylene glycol (PEG)-based PROTAC linker. Azido-C1-PEG3-C3-NH2 can be used in the synthesis of a series of PROTACs.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C10H22N4O3
Molecular Weight
246.30

1-Azido-4,7,10-trioxa-13-tridecanamine

    • Specification
      • Purity
        ≥ 98% (TLC)
        Appearance
        Light yellow oil
        Storage
        Store at 2-8 °C
        Shipping
        Room temperature in continental US; may vary elsewhere.
        IUPAC Name
        3-[2-[2-(3-azidopropoxy)ethoxy]ethoxy]propan-1-amine
        Synonyms
        1-Amino-11-azido-3,6,9-trioxaundecane; N3-TOTA; 3-[2-[2-(3-Azidopropoxy)ethoxy]ethoxy]propan-1-amine
    • Properties
      • Boiling Point
        198-202°C
        Density
        1.10 g/mL at 20 °C(lit.)
        InChI Key
        VJXPLUVBIHOQFJ-UHFFFAOYSA-N
        InChI
        InChI=1S/C10H22N4O3/c11-3-1-5-15-7-9-17-10-8-16-6-2-4-13-14-12/h1-11H2
        Canonical SMILES
        C(CN)COCCOCCOCCCN=[N+]=[N-]
    • Reference Reading
      • 1. Crystal structures of two PCN pincer iridium complexes and one PCP pincer carbodi-phospho-rane iridium inter-mediate: substitution of one phosphine moiety of a carbodi-phospho-rane by an organic azide
        Gabriel Julian Partl, Felix Nussbaumer, Walter Schuh, Holger Kopacka, Klaus Wurst, Paul Peringer Acta Crystallogr E Crystallogr Commun. 2019 Jan 1;75(Pt 1):75-80. doi: 10.1107/S2056989018017644.
        The structure of [Ir{(4-Cl-C6H4N3)C(dppm)-κ3 P,C,N}(dppm-κ2 P,P')]Cl·1.5CH2Cl2·0.5C7H8 (C57H48Cl2IrN3P4·1.5CH2Cl2·0.5C7H8) (2), dppm = bis-(di-phenyl-phosphino)methane {systematic name: [7-(4-chloro-phen-yl)-1,1,3,3-tetra-phenyl-5,6,7-tri-aza-κN 7-1,3λ4-diphospha-κP 1-hepta-4,6-dien-4-yl][methyl-ene-bis(di-phenyl-phosphine)-κ2 P,P']iridium(I) chloride-di-chloro-methane-toluene (2/3/1)}, resulting from the reaction of [IrClH{C(dppm)2-κ3 P,C,P)(MeCN)]Cl (1a) with 1-azido-4-chloro-benzene, shows a monocationic five-coordinate IrI complex with a distorted trigonal-bipyramidal geometry. In 2, the iridium centre is coordinated by the neutral triazeneyl-idene-phospho-rane (4-Cl-C6H4N3)C(dppm) acting as a PCN pincer ligand, and a chelating dppm unit. The structure of the coordination compound [IrCl(CN)H(C(dppm)2-κ3 P,C,P)]·CH3CN, (C52H45ClIrNP4·CH3CN) (1b) [systematic name: chlorido-cyanidohydrido(1,1,3,3,5,5,7,7-octa-phenyl-1,3λ5,5λ4,7-tetra-phospha-κ2 P 1,P 7-hept-3-en-4-yl)iridium(III) aceto-nitrile monosolvate], prepared from 1a and KCN, reveals an octa-hedral IrIII central atom with a meridional PCP pincer carbodi-phospho-rane (CDP) ligand; the chloride ligand is located trans to the central carbon of the CDP functionality while the hydrido and cyanido ligands are situated trans to each other. The chiral coordination compound [Ir(CN)((4-Cl-C6H4N3)CH(CH(P(Ph)2)2)-κ3 P,C,N)(dppm-κ2 P,P')]·2CH3OH, (C58H48ClIrN4P4·2CH3OH) (3) (systematic name: {4-[3-(4-chloro-phen-yl)triazenido-κN 3]-1,1,3,3-tetra-phenyl-1,3λ5-diphospha-κP 1-but-2-en-4-yl}cyanido[methyl-enebis(di-phenyl-phosphine)-κ2 P,P']iridium(III) methanol disolvate), formed via prolonged reaction of 1-azido-4-chloro-benzene with 1b, features a six-coordinate IrIII central atom. The iridium centre is coordinated by the dianionic facial PCN pincer ligand [(4-Cl-C6H4N3)CH(CH(P(Ph2)2)2)], a cyanido ligand trans to the central carbon of the PCN pincer ligand and a chelating dppm unit. Complex 2 exhibits a 2:1 positional disorder of the Cl- anion. The CH2Cl2 and C7H8 solvent mol-ecules show occupational disorder, with the toluene mol-ecule exhibiting additional 1:1 positional disorder with some nearly overlying carbon atoms.
        2. Synthesis of 1,4-dideoxy-1,4-imino-D-glucitol, a glucosidase inhibitor
        J Kuszmann, L Kiss Carbohydr Res. 1986 Sep 15;153(1):45-53. doi: 10.1016/s0008-6215(00)90194-0.
        1,2:5,6-Di-O-isopropylidene-D-glucitol was converted via its 1,4-dimethanesulfonate into the 1-azido-4-methanesulfonate which, after deprotection and treatment with barium hydroxide, afforded a 9:1 mixture of the corresponding 3,4- and 4,5-anhydro derivatives. Reduction of this mixture by transfer hydrogenation using ammonium formate in methanol and Pd/C as catalyst afforded 1,4-dideoxy-1,4-imino-D-glucitol (4), the structure of which was proved after acetylation by 1H-n.m.r. spectroscopy. Compound 4 is a potent alpha-D-glucosidase inhibitor (Ki 7 X 10(-4)M) and a less potent beta-D-glucosidase inhibitor (Ki 1.25 X 10(-4)M), and inhibits beta-D-galactosidase non-competitively.
        3. Catalytic Synthesis of N-Heterocycles via Direct C(sp3)-H Amination Using an Air-Stable Iron(III) Species with a Redox-Active Ligand
        Bidraha Bagh, et al. J Am Chem Soc. 2017 Apr 12;139(14):5117-5124. doi: 10.1021/jacs.7b00270. Epub 2017 Mar 28.
        Coordination of FeCl3 to the redox-active pyridine-aminophenol ligand NNOH2 in the presence of base and under aerobic conditions generates FeCl2(NNOISQ) (1), featuring high-spin FeIII and an NNOISQ radical ligand. The complex has an overall S = 2 spin state, as deduced from experimental and computational data. The ligand-centered radical couples antiferromagnetically with the Fe center. Readily available, well-defined, and air-stable 1 catalyzes the challenging intramolecular direct C(sp3)-H amination of unactivated organic azides to generate a range of saturated N-heterocycles with the highest turnover number (TON) (1 mol% of 1, 12 h, TON = 62; 0.1 mol% of 1, 7 days, TON = 620) reported to date. The catalyst is easily recycled without noticeable loss of catalytic activity. A detailed kinetic study for C(sp3)-H amination of 1-azido-4-phenylbutane (S1) revealed zero order in the azide substrate and first order in both the catalyst and Boc2O. A cationic iron complex, generated from the neutral precatalyst upon reaction with Boc2O, is proposed as the catalytically active species.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket