BSJ-03-204

 CAS No.: 2349356-09-6  Cat No.: BP-400074  Purity: ≥98% 4.5  

BSJ-03-204 is a potent and selective PROTAC® Cdk4/6 Degrader, linked by Cereblon ligand and CDK ligand.

BSJ-03-204

Structure of 2349356-09-6

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
PROTAC
Molecular Formula
C43H48N10O8
Molecular Weight
832.90
Appearance
Solid Powder

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • mg to g scale for early stage;
  • CDMO and CMO support.
  • 24/7 customer service;
  • 100% quality assurance;
  • Efficient global delivery;
  • Over 95% customer satisfaction.
Popular Publications Citing BOC Sciences Products
Purity
≥98%
Solubility
In DMSO: 100 mg/mL (120.06 mM; Need ultrasonic)
Appearance
Solid Powder
Storage
-20°C, protect from light; In solvent, -80°C, 6 months; -20°C, 1 month (protect from light)
Shipping
Room temperature in continental US; may vary elsewhere.
IUPACName
N-[4-[4-[6-[(6-acetyl-8-cyclopentyl-5-methyl-7-oxopyrido[2,3-d]pyrimidin-2-yl)amino]pyridin-3-yl]piperazin-1-yl]butyl]-2-[2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindol-4-yl]oxyacetamide
Synonyms
N-(4-(4-(6-((6-acetyl-8-cyclopentyl-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperazin-1-yl)butyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide; Acetamide, N-[4-[4-[6-[(6-acetyl-8-cyclopentyl-7,8-dihydro-5-methyl-7-oxopyrido[2,3-d]pyrimidin-2-yl)amino]-3-pyridinyl]-1-piperazinyl]butyl]-2-[[2-(2,6-dioxo-3-piperidinyl)-2,3-dihydro-1,3-dioxo-1H-isoindol-4-yl]oxy]-; N-[4-[4-[6-[(6-Acetyl-8-cyclopentyl-7,8-dihydro-5-methyl-7-oxopyrido[2,3-d]pyrimidin-2-yl)amino]-3-pyridinyl]-1-piperazinyl]butyl]-2-[[2-(2,6-dioxo-3-piperidinyl)-2,3-dihydro-1,3-dioxo-1H-isoindol-4-yl]oxy]acetamide; BSJ-03204; BSJ03204; BSJ 03 204
Density
1.397±0.06 g/cm3
InChI Key
KDMOCOWXLQOXEB-UHFFFAOYSA-N
InChI
InChI=1S/C43H48N10O8/c1-25-30-23-46-43(49-38(30)52(27-8-3-4-9-27)41(59)36(25)26(2)54)47-33-14-12-28(22-45-33)51-20-18-50(19-21-51)17-6-5-16-44-35(56)24-61-32-11-7-10-29-37(32)42(60)53(40(29)58)31-13-15-34(55)48-39(31)57/h7,10-12,14,22-23,27,31H,3-6,8-9,13,15-21,24H2,1-2H3,(H,44,56)(H,48,55,57)(H,45,46,47,49)
Canonical SMILES
CC(=O)C1=C(C)C2=CN=C(NC3=CC=C(N4CCN(CCCCNC(=O)COC5=CC=CC6=C5C(=O)N(C5CCC(=O)NC5=O)C6=O)CC4)C=N3)N=C2N(C2CCCC2)C1=O
1. Mapping the degradable kinome provides a resource for expedited degrader development.
Donovan, K.A., Ferguson, F.M., Bushman, J.W., Eleuteri, N.A., Bhunia, D., Ryu, S., Tan, L., Shi, K., Yue, H., Liu, X. and Dobrovolsky, D., 2020. Cell, 183(6), pp.1714-1731.
Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ~200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.
2. Development of dual and selective degraders of cyclin-dependent kinases 4 and 6.
Jiang, B., Wang, E.S., Donovan, K.A., Liang, Y., Fischer, E.S., Zhang, T. and Gray, N.S., 2019. Angewandte Chemie International Edition, 58(19), pp.6321-6326.
Cyclin-dependent kinases 4 and 6 (CDK4/6) are key regulators of the cell cycle, and there are FDA-approved CDK4/6 inhibitors for treating patients with metastatic breast cancer. However, due to conservation of their ATP-binding sites, development of selective agents has remained elusive. Here, we report imide-based degrader molecules capable of degrading both CDK4/6, or selectively degrading either CDK4 or CDK6. We were also able to tune the activity of these molecules against Ikaros (IKZF1) and Aiolos (IKZF3), which are well-established targets of imide-based degraders. We found that in mantle cell lymphoma cell lines, combined IKZF1/3 degradation with dual CDK4/6 degradation produced enhanced anti-proliferative effects compared to CDK4/6 inhibition, CDK4/6 degradation, or IKZF1/3 degradation. In summary, we report here the first compounds capable of inducing selective degradation of CDK4 and CDK6 as tools to pharmacologically dissect their distinct biological functions.
ConcentrationVolumeMass1 mg5 mg10 mg
0.2 mM6 mL30.01 mL60.03 mL
1 mM1.2 mL6 mL12.01 mL
2 mM0.6 mL3 mL6 mL
10 mM0.12 mL0.6 mL1.2 mL

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket