1. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK
Tiepeng Wang, Binyan Lin, Zhenzhong Chen, Yangmin Qiu, Kai Zhao, Na Lu, Yongxu Li Oncogene . 2020 Sep;39(37):6024-6040. doi: 10.1038/s41388-020-01412-x.
Metastatic breast cancer is characterized by high mortality and limited therapeutic target. During tumor metastasis, cytoskeletal reorganization is one of the key steps in the migration and invasion of breast cancer cells. Collapsin response mediator protein 2 (CRMP2) is a cytosolic phosphoprotein that plays an important role in regulating cytoskeletal dynamics. Previous researches have reported that altered CRMP2 expression is associated with breast cancer progression, but the underlying mechanism remains poorly understood. Here, we show that CRMP2 expression is reduced in various subtypes of breast cancers and negatively correlated with lymphatic metastasis. Overexpression of CRMP2 significantly inhibits invasion and stemness in breast cancer cells, while downregulation of CRMP2 promotes cell invasion, which is not required for tubulin polymerization. Mechanistic studies demonstrate that CRMP2 interacts with RECK, prevents RECK degradation, which, in turn, blocks NF-κB and Wnt signaling pathways. Furthermore, we find that phosphorylation of CRMP2 at T514 and S522 remarkably abolishes its functions to bind with RECK and to inhibit cell invasion. Pharmacologic rescue of CRMP2 expression suppressed breast cancer metastasis in vitro and in vivo and stimulated a synergetic effect with FN-1501 that induces CRMP2 dephosphorylation. Collectively, this study highlights the potential of CRMP2 as a therapeutic target in breast cancer metastasis and reveals a distinct mechanism of CRMP2.
2. Design and Synthesis of 4-(Heterocyclic Substituted Amino)-1 H-Pyrazole-3-Carboxamide Derivatives and Their Potent Activity against Acute Myeloid Leukemia (AML)
Tao Lu, Hao Heng, Shuai Lu, Chao Yao, Yue Wang, Li Xiang, Jiongheng Cai, Yanle Zhi, Zhijie Wang, Baoquan Li Int J Mol Sci . 2019 Nov 15;20(22):5739. doi: 10.3390/ijms20225739.
Fms-like receptor tyrosine kinase 3 (FLT3) has been emerging as an attractive target for the treatment of acute myeloid leukemia (AML). By modifying the structure of FN-1501, a potent FLT3 inhibitor, 24 novel 1H-pyrazole-3-carboxamide derivatives were designed and synthesized. Compound8tshowed strong activity against FLT3 (IC50: 0.089 nM) and CDK2/4 (IC50: 0.719/0.770 nM), which is more efficient than FN-1501(FLT3, IC50: 2.33 nM; CDK2/4, IC50: 1.02/0.39 nM). Compound8talso showed excellent inhibitory activity against a variety of FLT3 mutants (IC50< 5 nM), and potent anti-proliferative effect within the nanomolar range on acute myeloid leukemia (MV4-11, IC50: 1.22 nM). In addition, compound8tsignificantly inhibited the proliferation of most human cell lines of NCI60 (GI50< 1 μM for most cell lines). Taken together, these results demonstrated the potential of8tas a novel compound for further development into a kinase inhibitor applied in cancer therapeutics.
3. Discovery of 4-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1H-pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-Kinase Inhibitor with Potentially High Efficiency against Acute Myelocytic Leukemia
Zhanwei Wang, Jun Ling, Tao Lu, Shuai Lu, Yue Wang, Chao Yao, Qiaomei Jin, Guowu Lin, Taotao Yang, Tonghui Li, Yanle Zhi, Li Zhang, Haoliang Yuan, Jianlin Jin, Yadong Chen, Hao Guo, Baoquan Li J Med Chem . 2018 Feb 22;61(4):1499-1518. doi: 10.1021/acs.jmedchem.7b01261.
A series of 1-H-pyrazole-3-carboxamide derivatives have been designed and synthesized that exhibit excellent FLT3 and CDK inhibition and antiproliferative activities. A structure-activity-relationship study illustrates that the incorporation of a pyrimidine-fused heterocycle at position 4 of the pyrazole is critical for FLT3 and CDK inhibition. Compound 50 (FN-1501), which possesses potent inhibitory activities against FLT3, CDK2, CDK4, and CDK6 with IC50values in the nanomolar range, shows antiproliferative activities against MV4-11 cells (IC50: 0.008 μM), which correlates with the suppression of retinoblastoma phosphorylation, FLT3, ERK, AKT, and STAT5 and the onset of apoptosis. Acute-toxicity studies in mice show that compound 50 (LD50: 186 mg/kg) is safer than AT7519 (32 mg/kg). In MV4-11 xenografts in a nude-mouse model, compound 50 can induce tumor regression at the dose of 15 mg/kg, which is more efficient than cytarabine (50 mg/kg). Taken together, these results demonstrate the potential of this unique compound for further development into a drug applied in acute-myeloid-leukemia (AML) therapeutics.