Mal-C2-cyclohexylcarboxyl-hydrazide hydrochloride

 CAS No.: 174422-72-1  Cat No.: BP-500616 4.5  

Mal-C2-cyclohexylcarboxyl-hydrazide hydrochloride is a PROTAC linker, which is composed of alkyl chains. Mal-C2-cyclohexylcarboxyl-hydrazide hydrochloride can be used to synthesize a range of PROTACs.

Mal-C2-cyclohexylcarboxyl-hydrazide hydrochloride

Structure of 174422-72-1

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
PROTAC Linker
Molecular Formula
C₁₂H₁₈ClN₃O₃
Molecular Weight
287.74

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • mg to g scale for early stage;
  • CDMO and CMO support.
  • 24/7 customer service;
  • 100% quality assurance;
  • Efficient global delivery;
  • Over 95% customer satisfaction.
Popular Publications Citing BOC Sciences Products
Solubility
In H2O: 33.33 mg/mL (115.83 mM; Need ultrasonic)<br/>In DMSO: 16.67 mg/mL (57.93 mM; Need ultrasonic)
Storage
Powder, -20°C, 3 years; 4°C, 2 years; In solvent, -80°C, 6 months; -20°C, 1 month
Shipping
Room temperature in continental US; may vary elsewhere.
IUPACName
4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexane-1-carbohydrazide;hydrochloride
InChI Key
CKGAFBJFAXITJV-UHFFFAOYSA-N
InChI
InChI=1S/C12H17N3O3.ClH/c13-14-12(18)9-3-1-8(2-4-9)7-15-10(16)5-6-11(15)17;/h5-6,8-9H,1-4,7,13H2,(H,14,18);1H
Canonical SMILES
C1CC(CCC1CN2C(=O)C=CC2=O)C(=O)NN.Cl
1. Metal-free and regiospecific synthesis of 3-arylindoles
Chuangchuang Xu, Wenlai Xie, Jiaxi Xu Org Biomol Chem. 2020 Apr 8;18(14):2661-2671.doi: 10.1039/d0ob00317d.
A convenient, metal-free, and organic acid-base promoted synthetic method to prepare 3-arylindoles from 3-aryloxirane-2-carbonitriles and arylhydrazine hydrochlorides has been developed. In the reaction, the organic acid catalyzes a tandem nucleophilic ring-opening reaction of aryloxiranecarbonitriles and arylhydrazine hydrochlorides and Fischer indolization. The organic base triethylamine plays a crucial role in the final elimination step in the Fischer indole synthesis, affording 3-arylindoles regiospecifically. The reaction features advantages of microwave acceleration, non-metal participation, short reaction time, organic acid-base co-catalysis, and broad substrate scope.
2. 1-Haloacylpiperazines
S Groszkowski, J Sienkiewicz, L Korzycka Pol J Pharmacol Pharm. 1975 Apr-Jun;27(2):183-6.
By direct acylation of piperazine with halogenocarboxylic acid chlorides in acid medium, the hydrochlorides of 1-haloacylpiperazines were obtained.
3. Diastereo- and enantioselective anti-selective hydrogenation of α-amino-β-keto ester hydrochlorides and related compounds using transition-metal-chiral-bisphosphine catalysts
Yasumasa Hamada Chem Rec. 2014 Apr;14(2):235-50.doi: 10.1002/tcr.201300032.Epub 2014 Feb 18.
This review describes our recent works on the diastereo- and enantioselective synthesis of anti-β-hydroxy-α-amino acid esters using transition-metal-chiral-bisphosphine catalysts. A variety of transition metals, namely ruthenium (Ru), rhodium (Rh), iridium (Ir), and nickel (Ni), in combination with chiral bisphosphines, worked well as catalysts for the direct anti-selective asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides, yielding anti-β-hydroxy-α-amino acid esters via dynamic kinetic resolution (DKR) in excellent yields and diastereo- and enantioselectivities. The Ru-catalyzed asymmetric hydrogenation of α-amino-β-ketoesters via DKR is the first example of generating anti-β-hydroxy-α-amino acids. Complexes of iridium and axially chiral bisphosphines catalyze an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides via dynamic kinetic resolution. A homogeneous Ni-chiral-bisphosphine complex also catalyzes an efficient asymmetric hydrogenation of α-amino-β-keto ester hydrochlorides in an anti-selective manner. As a related process, the asymmetric hydrogenation of the configurationally stable substituted α-aminoketones using a Ni catalyst via DKR is also described.
ConcentrationVolumeMass1 mg5 mg10 mg
1 mM3.4754 mL17.3768 mL34.7536 mL
5 mM0.6951 mL3.4754 mL6.9507 mL
10 mM0.3475 mL1.7377 mL3.4754 mL

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket