1. Inhibiting ULK1 kinase decreases autophagy and cell viability in high-grade serous ovarian cancer spheroids
Yudith Ramos Valdés, Gabriel E DiMattia, Jeremi Laski, Elaine Liu, Bipradeb Singha, Trevor G Shepherd Am J Cancer Res . 2020 May 1;10(5):1384-1399.
Metastasis in high-grade serous ovarian cancer (HGSOC) occurs through an unconventional route that involves exfoliation of cancer cells from primary tumors and peritoneal dissemination via multicellular clusters or spheroids. Previously, we demonstrated autophagy induction in HGSOC spheroids grownin vitroand in spheroids collected from ovarian cancer patient ascites; thus, we speculate that autophagy may contribute to spheroid cell survival and overall disease progression. Hence, in this study we sought to evaluate whether ULK1 (unc-51-like kinase-1), a serine-threonine kinase critical for stress-induced autophagy, is important for autophagy regulation in HGSOC spheroids. We demonstrate that HGSOC spheroids have increased ULK1 protein expression that parallels autophagy activation.ULK1knockdown increased p62 accumulation and decreased LC3-II/I ratio in HGSOC spheroids. In addition, knocking down ATG13, a protein that regulates ULK1 activity via complex formation, phenocopied our ULK1 knockdown results. HGSOC spheroids were blocked in autophagic flux due toULK1andATG13knockdown as determined by an mCherry-eGFP-LC3B fluorescence reporter. These observations were recapitulated when HGSOC spheroids were treated with an ULK1 kinase inhibitor, MRT68921. Autophagy regulation in normal human fallopian tube epithelial FT190 cells, however, may bypass ULK1, since MRT68921 reduced viability in HGSOC spheroids but not in FT190 cells. Interestingly,ULK1mRNA expression is negatively correlated with patient survival among stage III and stage IV serous ovarian cancer patients. As we observed using established HGSOC cell lines, cultured spheroids using our new, patient-derived HGSOC cells were also sensitive to ULK1 inhibition and demonstrated reduced cell viability to MRT68921 treatment. These results demonstrate the importance of ULK1 for autophagy induction in HGSOC spheroids and therefore justifies further evaluation of MRT68921, and other novel ULK1 inhibitors, as potential therapeutics against metastatic HGSOC.
2. STAT3 suppresses the AMPKα/ULK1-dependent induction of autophagy in glioblastoma cells
Edward Chaum, Chuanhe Yang, Lawrence M Pfeffer, Michelle Sims, Jinggang Yin, Sujoy Bhattacharya, Yinan Wang J Cell Mol Med . 2022 Jul;26(14):3873-3890. doi: 10.1111/jcmm.17421.
Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine-727 and Tyrosine-705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2-AMPKα-ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3-KO cells by the enforced expression of wild-type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F- and S727A-STAT3 phosphorylation deficient mutants in STAT3-KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3-KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3-dependent autophagy in GBM, and thus are potential targets to treat GBM.
3. cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53
Karin M Gilljam, Agnete B Eriksen, Ellen Ruud, Heidi Kiil Blomhoff, Elin Hallan Naderi, Christian Bindesbøll, Eva Duthil, Anne Simonsen, Marta M Dirdal, Seham Skah, Nina Richartz Oncotarget . 2018 Jul 13;9(54):30434-30449. doi: 10.18632/oncotarget.25758.
Autophagy is important in regulating the balance between cell death and survival, with the tumor suppressor p53 as one of the key components in this interplay. We have previously utilized anin vitromodel of the most common form of childhood cancer, B cell precursor acute lymphoblastic leukemia (BCP-ALL), to show that activation of the cAMP signaling pathway inhibits p53-mediated apoptosis in response to DNA damage in both cell lines and primary leukemic cells. The present study reveals that cAMP-mediated survival of BCP-ALL cells exposed to DNA damaging agents, involves a critical and p53-independent enhancement of autophagy. Although autophagy generally is regarded as a survival mechanism, DNA damage-induced apoptosis has been linked both to enhanced and reduced levels of autophagy. Here we show that exposure of BCP-ALL cells to irradiation or cytotoxic drugs triggers autophagy and cell death in a p53-dependent manner. Stimulation of the cAMP signaling pathway further augments autophagy and inhibits the DNA damage-induced cell death concomitant with reduced nuclear levels of p53. Knocking-down the levels of p53 reduced the irradiation-induced autophagy and cell death, but had no effect on the cAMP-mediated autophagy. Moreover, prevention of autophagy by bafilomycin A1 or by the ULK-inhibitor MRT68921, diminished the protecting effect of cAMP signaling on DNA damage-induced cell death. Having previously proposed a role of the cAMP signaling pathway in development and treatment of BCP-ALLs, we here suggest that inhibitors of autophagy may improve current DNA damage-based therapy of BCP-ALL - independent of p53.