1. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development
Lei Zhang, Hongbing Luo, Meishan Liu, Shuangshuang Yan, Suxing Li, Weiwei Jin, Yue Zhao, Yumin Huang, Xiaolan Zhang, Xiaoyang Chen, Wei Huang BMC Plant Biol . 2018 Dec 3;18(1):318. doi: 10.1186/s12870-018-1543-7.
Background:The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear.Results:Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type.Conclusions:Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
2. Pleiotropic effects of the male sterile33 (ms33) mutation in Arabidopsis are associated with modifications in endogenous gibberellins, indole-3-acetic acid and abscisic acid
Ruichuan Zhang, Houman Fei, Richard P Pharis, Vipen K Sawhney Planta . 2004 Aug;219(4):649-60. doi: 10.1007/s00425-004-1270-1.
Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165-170; Fei and Sawhney (2001) Can J Bot 79:118-129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3. Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.
3. MicroRNA-29a Suppresses CD36 to Ameliorate High Fat Diet-Induced Steatohepatitis and Liver Fibrosis in Mice
Ya-Ling Yang, Hung-Yu Lin, Ying-Hsien Huang, Feng-Sheng Wang Cells . 2019 Oct 22;8(10):1298. doi: 10.3390/cells8101298.
MicroRNA-29 (miR-29) has been shown to play a critical role in reducing inflammation and fibrosis following liver injury. Non-alcoholic fatty liver disease (NAFLD) occurs when fat is deposited (steatosis) in the liver due to causes other than excessive alcohol use and is associated with liver fibrosis. In this study, we asked whether miR-29a could reduce experimental high fat diet (HFD)-induced obesity and liver fibrosis in mice. We performed systematical expression analyses of miR-29a transgenic mice (miR-29aTg mice) and wild-type littermates subjected to HFD-induced NAFLD. The results demonstrated that increased miR-29a not only alleviated HFD-induced body weight gain but also subcutaneous, visceral, and intestinal fat accumulation and hepatocellular steatosis in mice. Furthermore, hepatic tissue in the miR-29aTg mice displayed a weak fibrotic matrix concomitant with low fibrotic collagen1α1 expression within the affected tissues compared to the wild-type (WT) mice fed the HFD diet. Increased miR-29a signaling also resulted in the downregulation of expression of the epithelial mesenchymal transition-executing transcription factorsnail, mesenchymal markersvimentin, and such pro-inflammation markers asil6andmcp1within the liver tissue. Meanwhile, miR-29aTg-HFD mice exhibited significantly lower levels of peroxisome proliferator-activated receptor γ (PPARγ), mitochondrial transcription factor A TFAM, and mitochondria DNA content in the liver than the WT-HFD mice. An in vitro luciferase reporter assay further confirmed that miR-29a mimic transfection reduced fatty acid translocase CD36 expression in HepG2 cells. Conclusion: Our data provide new insights that miR-29a can improve HDF-induced obesity, hepatocellular steatosis, and fibrosis, as well as highlight the role of miR-29a in regulation of NAFLD.