PROTAC MDM2 Degrader-4 - CAS 2249750-24-9

PROTAC MDM2 Degrader-4 is a MDM2 degrader based on PROTAC technology. PROTAC MDM2 Degrader-4 composes of a potent MDM2 inhibitor, linker, and the MDM2 ligand for E3 ubiquitin ligase.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C70H74Cl4N8O14
Molecular Weight
1393.19

PROTAC MDM2 Degrader-4

    • Specification
      • Solubility
        10 mM in DMSO
        Storage
        Please store the product under the recommended conditions in the Certificate of Analysis.
        Shipping
        Room temperature in continental US; may vary elsewhere
        Synonyms
        PROTAC MDM2 Degrader 4; 2-[2-[2-[2-[4-[(4S,5R)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazole-1-carbonyl]-2-oxopiperazin-1-yl]acetyl]oxyethoxy]ethoxy]ethyl 2-[4-[(4S,5R)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazole-1-carbonyl]-2-oxopiperazin-1-yl]acetate
    • Properties
      • InChI Key
        QEEHXVDZCBZARJ-ADRSHWTGSA-N
        InChI
        InChI=1S/C70H74Cl4N8O14/c1-43(2)95-57-37-53(89-5)23-25-55(57)67-75-63(45-7-15-49(71)16-8-45)65(47-11-19-51(73)20-12-47)81(67)69(87)79-29-27-77(59(83)39-79)41-61(85)93-35-33-91-31-32-92-34-36-94-62(86)42-78-28-30-80(40-60(78)84)70(88)82-66(48-13-21-52(74)22-14-48)64(46-9-17-50(72)18-10-46)76-68(82)56-26-24-54(90-6)38-58(56)96-44(3)4/h7-26,37-38,43-44,63-66H,27-36,39-42H2,1-6H3/t63-,64-,65+,66+/m0/s1
        Canonical SMILES
        CC(C)OC1=C(C=CC(=C1)OC)C2=NC(C(N2C(=O)N3CCN(C(=O)C3)CC(=O)OCCOCCOCCOC(=O)CN4CCN(CC4=O)C(=O)N5C(C(N=C5C6=C(C=C(C=C6)OC)OC(C)C)C7=CC=C(C=C7)Cl)C8=CC=C(C=C8)Cl)C9=CC=C(C=C9)Cl)C1=CC=C(C=C1)Cl
    • Reference Reading
      • 1. Discovery of a Potent and Selective Degrader for USP7
        Yuan Pei, Jingfeng Fu, Yunkai Shi, Mengmeng Zhang, Guanghao Luo, Xiaomin Luo, Ning Song, Tian Mi, Yaxi Yang, Jia Li, Yubo Zhou, Bing Zhou Angew Chem Int Ed Engl. 2022 Aug 15;61(33):e202204395.doi: 10.1002/anie.202204395.Epub 2022 Jul 7.
        The tumor suppressor p53 is the most frequently mutated gene in human cancer and more than half of cancers contain p53 mutations. The development of novel and effective therapeutic strategies for p53 mutant cancer therapy is a big challenge and highly desirable. Ubiquitin-specific protease 7 (USP7), also known as HAUSP, is a deubiquitinating enzyme and proposed to stabilize the oncogenic E3 ubiquitin ligase MDM2 that promotes the proteosomal degradation of p53. Herein, we report the design and characterization of U7D-1 as the first selective USP7-degrading Proteolysis Targeting Chimera (PROTAC). U7D-1 showed selective and effective USP7 degradation, and maintained potent cell growth inhibition in p53 mutant cancer cells, with USP7 inhibitor showing no activity. These data clearly demonstrated the practicality and importance of PROTAC as a preliminary chemical tool for investigating USP7 protein functions and a promising method for potential p53 mutant cancer therapy.
        2. Clinical considerations for the design of PROTACs in cancer
        Cristina Nieto-Jiménez, Esther Cabañas Morafraile, Carlos Alonso-Moreno, Alberto Ocaña Mol Cancer. 2022 Mar 7;21(1):67.doi: 10.1186/s12943-022-01535-7.
        Degradation of targeted proteins using proteolysis targeting chimeras (PROTACs) has gained momentum. A PROTAC is a bifunctional molecule that consists of three parts: a ligand that interacts with the protein to be degraded, another ligand that binds to an E3 ubiquitin ligase and a linker that connects both. Identification of the right proteins as targets to be degraded and a ligase that is highly expressed in tumors compare with normal tissue is mandatory, as can augment efficacy reducing toxicity. In this article we review the current development stage of PROTACs in cancer to categorize the best PROTAC construction. Targets including BCL2, CDK4 and MCL1 were highly expressed in all tumors; MCL1 was significantly increased in breast cancer and lung adenocarcinoma and CDK4 in colon adenocarcinoma. Degradation of CDK9, AURKA or PLK1, followed by BCL2, MCL1, PTPN11, BRD4, PTK2, showed a high dependency. Most ligases evaluated were not highly present in tumors except for MDM2 in breast, lung, prostate and gastric cancer. In non-transformed tissue MDM2 was the most abundant ligase, followed by cIAP and CRBN, and those with low expression included XIAP and VHL. MDM2 ligase coupled with inhibitors of the targets BCL2, BRD4, CDK9, PLK1 and MCL1 in stomach tumor, and MDM2 with PIK3C3 inhibitors in breast cancer, seems to be the best therapeutic strategy. Our results suggest potential options for the design of PROTACS in specific medical indications.
        3. Ubiquitination: Friend and foe in cancer
        Mohammed A Mansour Int J Biochem Cell Biol. 2018 Aug;101:80-93.doi: 10.1016/j.biocel.2018.06.001.Epub 2018 Jun 1.
        Dynamic modulation and posttranslational modification of proteins are tightly controlled biological processes that occur in response to physiological cues. One such dynamic modulation is ubiquitination, which marks proteins for degradation via the proteasome, altering their localization, affecting their activity, and promoting or interfering with protein interactions. Hence, ubiquitination is crucial for a plethora of physiological processes, including cell survival, differentiation and innate and adaptive immunity. Similar to kinases, components of the ubiquitination system are often deregulated, leading to a variety of diseases, such as cancer and neurodegenerative disorders. In a context-dependent manner, ubiquitination can regulate both tumor-suppressing and tumor-promoting pathways in cancer. This review outlines how components of the ubiquitination systems (e.g. E3 ligases and deubiquitinases) act as oncogenes or tumor suppressors according to the nature of their substrates. Furthermore, I interrogate how the current knowledge of the differential roles of ubiquitination in cancer lead to technical advances to inhibit or reactivate the components of the ubiquitination system accordingly.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket