SNIPER(BRD)-1 - CAS 2095244-54-3

SNIPER(BRD)-1, consists of an IAP antagonist LCL-161 derivative and a BET inhibitor, (+)-JQ-1, connected by a linker. SNIPER(BRD)-1 induces the degradation of BRD4 via the ubiquitin-proteasome pathway. SNIPER(BRD)-1 also degrades cIAP1 , cIAP2 and XIAP with IC50s of 6.8 nM, 17 nM, and 49nM, respectively[1].

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C53H66ClN9O8S2
Molecular Weight
1056.73

SNIPER(BRD)-1

    • Specification
      • Storage
        Please store the product under the recommended conditions in the Certificate of Analysis.
        Shipping
        Room temperature in continental US; may vary elsewhere
        IUPAC Name
        (2S)-N-[(1S)-2-[(2S)-2-[4-[3-[2-[2-[2-[2-[[2-[(9S)-7-(4-chlorophenyl)-4,5,13-trimethyl-3-thia-1,8,11,12-tetrazatricyclo[8.3.0.0^2,6]trideca-2(6),4,7,10,12-pentaen-9-yl]acetyl]amino]ethoxy]ethoxy]ethoxy]ethoxy]benzoyl]-1,3-thiazol-2-yl]pyrrolidin-1-yl]-1-cyclohexyl-2-oxoethyl]-2-(methylamino)propanamide
        Synonyms
        (S)-N-((S)-2-((S)-2-(4-(3-((1-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-2-oxo-6,9,12-trioxa-3-azatetradecan-14-yl)oxy)benzoyl)thiazol-2-yl)pyrrolidin-1-yl)-1-cyclohexyl-2-oxoethyl)-2-(methylamino)propanamide; 6H-Thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine-6-acetamide, 4-(4-chlorophenyl)-α-[2-[2-[2-[2-[3-[[2-[(2S)-1-[(2S)-2-cyclohexyl-2-[[(2S)-2-(methylamino)-1-oxopropyl]amino]acetyl]-2-pyrrolidinyl]-4-thiazolyl]carbonyl]phenoxy]ethoxy]ethoxy]ethoxy]ethyl]-2,3,9-trimethyl-, (6S)-; SNIPER(BRD4)-1
    • Properties
      • Density
        1.39±0.1 g/cm3
        InChI Key
        FVDSZRCRCFMYQV-CDYWKMCDSA-N
        InChI
        InChI=1S/C53H66ClN9O8S2/c1-32-34(3)73-53-45(32)46(37-16-18-39(54)19-17-37)57-41(49-61-60-35(4)63(49)53)30-44(64)56-20-22-68-23-24-69-25-26-70-27-28-71-40-14-9-13-38(29-40)48(65)42-31-72-51(58-42)43-15-10-21-62(43)52(67)47(36-11-7-6-8-12-36)59-50(66)33(2)55-5/h9,13-14,16-19,29,31,33,36,41,43,47,55H,6-8,10-12,15,20-28,30H2,1-5H3,(H,56,64)(H,59,66)/t33-,41-,43-,47-/m0/s1
        Canonical SMILES
        O=C(C=1N=C(SC1)C2N(C(=O)C(NC(=O)C(NC)C)C3CCCCC3)CCC2)C=4C=CC=C(OCCOCCOCCOCCNC(=O)CC5N=C(C=6C=CC(Cl)=CC6)C7=C(SC(=C7C)C)N8C(=NN=C85)C)C4
    • Reference Reading
      • 1. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs).
        Ohoka, N., Okuhira, K., Ito, M., Nagai, K., Shibata, N., Hattori, T., Ujikawa, O., Shimokawa, K., Sano, O., Koyama, R. and Fujita, H., 2017. Journal of Biological Chemistry, 292(11), pp.4556-4570.
        Many diseases, especially cancers, result from aberrant or overexpression of pathogenic proteins. Specific inhibitors against these proteins have shown remarkable therapeutic effects, but these are limited mainly to enzymes. An alternative approach that may have utility in drug development relies on selective degradation of pathogenic proteins via small chimeric molecules linking an E3 ubiquitin ligase to the targeted protein for proteasomal degradation. To this end, we recently developed a protein knockdown system based on hybrid small molecule SNIPERs (Specific and Nongenetic IAP-dependent Protein Erasers) that recruit inhibitor of the apoptosis protein (IAP) ubiquitin ligases to specifically degrade targeted proteins. Here, we extend our previous study to show a proof of concept of the SNIPER technology in vivo. By incorporating a high affinity IAP ligand, we developed a novel SNIPER against estrogen receptor α (ERα), SNIPER(ER)-87, that has a potent protein knockdown activity. The SNIPER(ER) reduced ERα levels in tumor xenografts and suppressed the growth of ERα-positive breast tumors in mice. Mechanistically, it preferentially recruits X-linked IAP (XIAP) rather than cellular IAP1, to degrade ERα via the ubiquitin-proteasome pathway. With this IAP ligand, potent SNIPERs against other pathogenic proteins, BCR-ABL, bromodomain-containing protein 4 (BRD4), and phosphodiesterase-4 (PDE4) could also be developed. These results indicate that forced ubiquitylation by SNIPERs is a useful method to achieve efficient protein knockdown with potential therapeutic activities and could also be applied to study the role of ubiquitylation in many cellular processes.
        2. Different degradation mechanisms of inhibitor of apoptosis proteins (IAPs) by the specific and nongenetic IAP-dependent protein eraser (SNIPER).
        Ohoka, N., Ujikawa, O., Shimokawa, K., Sameshima, T., Shibata, N., Hattori, T., Nara, H., Cho, N. and Naito, M., 2019. Chemical and Pharmaceutical Bulletin, 67(3), pp.203-209.
        Targeted protein degradation by small molecules is an emerging modality with significant potential for drug discovery. We previously developed chimeric molecules, termed specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs), which induce the ubiquitylation and proteasomal degradation of target proteins. This degradation is mediated by the IAPs; the target proteins include bromodomain-containing protein 4 (BRD4), an epigenetic regulator protein. The SNIPER that degrades this particular protein, SNIPER(BRD)-1, consists of an IAP antagonist LCL-161 derivative and a bromodomain and extra-terminal (BET) inhibitor, (+)-JQ-1. SNIPER(BRD)-1 also degrades a cellular inhibitor of apoptosis protein 1 (cIAP1) and an X-linked inhibitor of apoptosis protein (XIAP), the mechanisms of which are not well understood. Here, we show that the degradation of cIAP1 and XIAP by SNIPER(BRD)-1 is induced via different mechanisms. Using a chemical biology-based approach, we developed two inactive SNIPERs, SNIPER(BRD)-3 and SNIPER(BRD)-4, incapable of degrading BRD4. SNIPER(BRD)-3 contained an N-methylated LCL-161 derivative as the IAP ligand, which prevented it from binding IAPs, and resulted in the abrogated degradation of cIAP1, XIAP, and BRD4. SNIPER(BRD)-4, however, incorporated the enantiomer (-)-JQ-1 which was incapable of binding BRD4; this SNIPER degraded cIAP1 but lost the ability to degrade XIAP and BRD4. Furthermore, a mixture of the ligands, (+)-JQ-1 and LCL-161, induced the degradation of cIAP1, but not XIAP and BRD4. These results indicate that cIAP1 degradation is triggered by the binding of the IAP antagonist module to induce autoubiquitylation of cIAP1, whereas a ternary complex formation is required for the SNIPER-induced degradation of XIAP and BRD4.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket