Dde Biotin-PEG4-alkyne - CAS 1802908-00-4

Dde Biotin-PEG4-alkyne is a polyethylene glycol (PEG)-based PROTAC linker. Dde Biotin-PEG4-alkyne can be used in the synthesis of a series of PROTACs.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C₃₂H₅₀N₄O₈S
Molecular Weight
650.83

Dde Biotin-PEG4-alkyne

    • Specification
      • Storage
        Please store the product under the recommended conditions in the Certificate of Analysis.
        Shipping
        Room temperature in continental US; may vary elsewhere.
        IUPAC Name
        5-[(3aR,4R,6aS)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-N-[2-[2-[2-[2-[3-(2-hydroxy-4,4-dimethyl-6-oxocyclohexen-1-yl)-3-prop-2-ynyliminopropoxy]ethoxy]ethoxy]ethoxy]ethyl]pentanamide
    • Properties
      • InChI Key
        BDJHEZRAKBBIJH-UCVANPEUSA-N
        InChI
        InChI=1S/C32H50N4O8S/c1-4-10-33-23(29-25(37)20-32(2,3)21-26(29)38)9-12-41-14-16-43-18-19-44-17-15-42-13-11-34-28(39)8-6-5-7-27-30-24(22-45-27)35-31(40)36-30/h1,24,27,30,37H,5-22H2,2-3H3,(H,34,39)(H2,35,36,40)/t24-,27-,30-/m1/s1
        Canonical SMILES
        CC1(CC(=C(C(=O)C1)C(=NCC#C)CCOCCOCCOCCOCCNC(=O)CCCCC2C3C(CS2)NC(=O)N3)O)C
    • Reference Reading
      • 1. Distributed Differential Evolution With Adaptive Resource Allocation
        Jian-Yu Li, Ke-Jing Du, Zhi-Hui Zhan, Hua Wang, Jun Zhang IEEE Trans Cybern. 2022 Mar 14;PP.doi: 10.1109/TCYB.2022.3153964.Online ahead of print.
        Distributed differential evolution (DDE) is an efficient paradigm that adopts multiple populations for cooperatively solving complex optimization problems. However, how to allocate fitness evaluation (FE) budget resources among the distributed multiple populations can greatly influence the optimization ability of DDE. Therefore, this article proposes a novel three-layer DDE framework with adaptive resource allocation (DDE-ARA), including the algorithm layer for evolving various differential evolution (DE) populations, the dispatch layer for dispatching the individuals in the DE populations to different distributed machines, and the machine layer for accommodating distributed computers. In the DDE-ARA framework, three novel methods are further proposed. First, a general performance indicator (GPI) method is proposed to measure the performance of different DEs. Second, based on the GPI, a FE allocation (FEA) method is proposed to adaptively allocate the FE budget resources from poorly performing DEs to well-performing DEs for better search efficiency. This way, the GPI and FEA methods achieve the ARA in the algorithm layer. Third, a load balance strategy is proposed in the dispatch layer to balance the FE burden of different computers in the machine layer for improving load balance and algorithm speedup. Moreover, theoretical analyses are provided to show why the proposed DDE-ARA framework can be effective and to discuss the lower bound of its optimization error. Extensive experiments are conducted on all the 30 functions of CEC 2014 competitions at 10, 30, 50, and 100 dimensions, and some state-of-the-art DDE algorithms are adopted for comparisons. The results show the great effectiveness and efficiency of the proposed framework and the three novel methods.
        2. Oxidative Phosphorylation Impairment by DDT and DDE
        Sarah E Elmore, Michele A La Merrill Front Endocrinol (Lausanne). 2019 Mar 12;10:122.doi: 10.3389/fendo.2019.00122.eCollection 2019.
        There is increasing evidence supporting the characterization of the pesticide DDT and its metabolite, DDE, as obesogens and metabolic disruptors. Elucidating the mechanism is critical to understanding whether the association of DDT and DDE with obesity and diabetes is in fact causal. One area of research investigating the etiology of metabolic diseases is mitochondrial toxicity. Several studies have found associations between mitochondrial defects and insulin resistance, cellular respiration, substrate utilization, and energy expenditure. Although the mitotoxicity of DDT and DDE was established 20-40 years ago, it was not viewed in the light of the diseases faced today; therefore, it is prudent to reexamine the mitotoxicity literature for mechanistic support of DDT and DDE as causal contributors to obesity and diabetes, as well as associated diseases, such as cancer and Alzheimer's disease. This review aims to focus on studies investigating the effect of DDT or DDE on mammalian mitochondrial oxidative phosphorylation. We illustrate that both DDT and DDE impair the electron transport chain (ETC) and oxidative phosphorylation. We conclude that there is reasonable data to suggest that DDT and DDE target specific complexes and processes within the mitochondria, and that these insults could in turn contribute to the role of DDT and DDE in mitochondria-associated diseases.
        3. DDE remediation and degradation
        John E Thomas, Li-Tse Ou, Abid All-Agely Rev Environ Contam Toxicol. 2008;194:55-69.doi: 10.1007/978-0-387-74816-0_3.
        DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the breakdown of DDE by the extracellular lignolytic enzymes produced by white rot fungi. The addition of adjutants such as sodium ion, surfactants, and cellulose increased the rate of DDT aerobic or anaerobic degradation but did little to enhance the rate of DDE disappearance under anaerobic conditions. Only in the past decade has it been demonstrated that DDE can undergo reductive dechlorination under methanogenic and sulfidogenic conditions to form the degradation product DDMU, 1-chloro-2,2'-bis-(4'-chlorophenyl)ethane. The only pure culture reported to degrade DDE under anaerobic conditions was the denitrifier Alcaligens denitrificans. The degradation of DDE by this bacterium was enhanced by glucose, whereas biphenyl fumes had no effect. Abiotic remediation by DDE volatilization was enhanced by flooding and irrigation and deepplowing inhibited the volatilization. The use of zero-valent iron and surfactants in flooded soils enhanced DDT degradation but did not significantly alter the rate of DDE removal. Other catalysts (palladized magnesium, palladium on carbon, and nickel/aluminum alloys) degraded DDT and its metabolites, including DDE. However, these systems are often biphasic or involve explosive gases or both. Safer abiotic alternatives use UV light with titanium oxide or visible light with methylene green to degrade DDT, DDD, and DDE in aqueous or mixed solvent systems. Remediation and degradation of DDE in soil and water by phytoextraction, aerobic and anaerobic microorganisms, or abiotic methods can be accomplished. However, success has been limited, and great care must be taken that the method does not transfer the contaminants to another locale (by volatilization, deep plowing, erosion, or runoff) or to another species (by ingestion of accumulating plants or contaminated water). Although the remediation of DDT-, DDD-, and DDE-contaminated soil and water is beset with myriad problems, there remain many open avenues of research.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket