HaloPROTAC3 - CAS 1799506-07-2

HaloPROTAC3 is a potent and efficacious degrader of GFP-HaloTag7.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C41H55ClN4O8S
Molecular Weight
799.42

HaloPROTAC3

    • Specification
      • Purity
        >98%
        Solubility
        Soluble in DMSO.
        Appearance
        Solid Powder
        Storage
        Store at -20°C
        IUPAC Name
        (2S,4R)-N-[[2-[2-[2-[2-(6-chlorohexoxy)ethoxy]ethoxy]ethoxy]-4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]-4-hydroxy-1-[(2S)-3-methyl-2-(3-oxo-1H-isoindol-2-yl)butanoyl]pyrrolidine-2-carboxamide
        Synonyms
        VH285-PEG4-C4-Cl
    • Properties
      • InChI Key
        UABTZMQNIWDHGQ-JGNAJVFASA-N
        InChI
        InChI=1S/C41H55ClN4O8S/c1-28(2)37(46-25-32-10-6-7-11-34(32)40(46)49)41(50)45-26-33(47)23-35(45)39(48)43-24-31-13-12-30(38-29(3)44-27-55-38)22-36(31)54-21-20-53-19-18-52-17-16-51-15-9-5-4-8-14-42/h6-7,10-13,22,27-28,33,35,37,47H,4-5,8-9,14-21,23-26H2,1-3H3,(H,43,48)/t33-,35+,37+/m1/s1
        Canonical SMILES
        CC1=C(SC=N1)C2=CC(=C(C=C2)CNC(=O)C3CC(CN3C(=O)C(C(C)C)N4CC5=CC=CC=C5C4=O)O)OCCOCCOCCOCCCCCCCl
    • Reference Reading
      • 1. Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader
        Hannah Tovell, Andrea Testa, Chiara Maniaci, Houjiang Zhou, Alan R Prescott, Thomas Macartney, Alessio Ciulli, Dario R Alessi ACS Chem Biol. 2019 May 17;14(5):882-892.doi: 10.1021/acschembio.8b01016.Epub 2019 Apr 22.
        Inducing post-translational protein knockdown is an important approach to probe biology and validate drug targets. An efficient strategy to achieve this involves expression of a protein of interest fused to an exogenous tag, allowing tag-directed chemical degraders to mediate protein ubiquitylation and proteasomal degradation. Here, we combine improved HaloPROTAC degrader probes with CRISPR/Cas9 genome editing technology to trigger rapid degradation of endogenous target proteins. Our optimized probe, HaloPROTAC-E, a chloroalkane conjugate of high-affinity VHL binder VH298, induced reversible degradation of two endosomally localized proteins, SGK3 and VPS34, with a DC50 of 3-10 nM. HaloPROTAC-E induced rapid (~50% degradation after 30 min) and complete ( Dmax of ~95% at 48 h) depletion of Halo-tagged SGK3, blocking downstream phosphorylation of the SGK3 substrate NDRG1. HaloPROTAC-E more potently induced greater steady state degradation of Halo tagged endogenous VPS34 than the previously reported HaloPROTAC3 compound. Quantitative global proteomics revealed that HaloPROTAC-E is remarkably selective inducing only degradation of the Halo tagged endogenous VPS34 complex (VPS34, VPS15, Beclin1, and ATG14) and no other proteins were significantly degraded. This study exemplifies the combination of HaloPROTACs with CRISPR/Cas9 endogenous protein tagging as a useful method to induce rapid and reversible degradation of endogenous proteins to interrogate their function.
        2. Targeted Protein Degradation Phenotypic Studies Using HaloTag CRISPR/Cas9 Endogenous Tagging Coupled with HaloPROTAC3
        Elizabeth A Caine, Sarah D Mahan, Rebecca L Johnson, Amanda N Nieman, Ngan Lam, Curtis R Warren, Kristin M Riching, Marjeta Urh, Danette L Daniels Curr Protoc Pharmacol. 2020 Dec;91(1):e81.doi: 10.1002/cpph.81.
        To assess the role of a protein, protein loss phenotypic studies can be used, most commonly through mutagenesis RNAi or CRISPR knockout. Such studies have been critical for the understanding of protein function and the identification of putative therapeutic targets for numerous human disease states. However, these methodological approaches present challenges because they are not easily reversible, and if an essential gene is targeted, an associated loss of cell viability can potentially hinder further studies. Here we present a reversible and conditional live-cell knockout strategy that is applicable to numerous proteins. This modular protein-tagging approach regulates target loss at the protein, rather than the genomic, level through the use of HaloPROTAC3, which specifically degrades HaloTag fusion proteins via recruitment of the VHL E3 ligase component. To enable HaloTag-mediated degradation of endogenous proteins, we provide protocols for HaloTag genomic insertion at the protein N or C terminus via CRISPR/Cas9 and use of HaloTag fluorescent ligands to enrich edited cells via Fluorescence-Activated Cell Sorting (FACS). Using these approaches, endogenous HaloTag fusion proteins present in various subcellular locations can be degraded by HaloPROTAC3. As detecting the degradation of endogenous targets is challenging, the 11-amino-acid peptide tag HiBiT is added to the HaloTag fusion to allows the sensitive luminescence detection of HaloTag fusion levels without the use of antibodies. Lastly, we demonstrate, through comparison of HaloPROTAC3 degradation with that of another fusion tag PROTAC, dTAG-13, that HaloPROTAC3 has a faster degradation rate and similar extent of degradation. © 2020 The Authors. Basic Protocol 1: CRISPR/Cas9 insertion of HaloTag or HiBiT-HaloTag Basic Protocol 2: HaloPROTAC3 degradation of endogenous HaloTag fusions.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket