(10-BRomodecyl)phosphonic acid - CAS 934985-98-5

(10-BRomodecyl)phosphonic acid is a PROTAC linker, which is composed of alkyl chains. (10-BRomodecyl)phosphonic acid can be used to synthesize a range of PROTACs.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C₁₀H₂₂BrO₃P
Molecular Weight
301.16

(10-BRomodecyl)phosphonic acid

    • Specification
      • Storage
        Please store the product under the recommended conditions in the Certificate of Analysis.
        Shipping
        Room temperature in continental US; may vary elsewhere.
        IUPAC Name
        10-bromodecylphosphonic acid
    • Properties
      • InChI Key
        PZKCVYRQOBKBBT-UHFFFAOYSA-N
        InChI
        InChI=1S/C10H22BrO3P/c11-9-7-5-3-1-2-4-6-8-10-15(12,13)14/h1-10H2,(H2,12,13,14)
        Canonical SMILES
        C(CCCCCBr)CCCCP(=O)(O)O
    • Reference Reading
      • 1. Phosphonic acid: a long-standing and versatile crop protectant
        Elizabeth Dann, Adéle McLeod Pest Manag Sci. 2021 May;77(5):2197-2208. doi: 10.1002/ps.6156.Epub 2020 Nov 8.
        Phosphonic acid-based fungicides, also referred to as phosphonates, have been used extensively as crop protectants in horticulture since the late 1970s, and more recently in native ecosystems and forestry. Discovering that phosphonates are effective against foliar and soilborne oomycete diseases, such as those caused by species of Phytophthora, Pythium and Plasmopara, was a significant breakthrough, especially for soilborne pathogens that are notoriously difficult to manage. Phosphonates have played an important role in protection of forests and sensitive natural ecosystems, under threat from these pathogens. Since introduction, their increased application in management of non-oomycete diseases, along with other functionalities, demonstrates their versatility in agriculture and more broadly. Continued use of phosphonic acid crop protectants will be underpinned by demonstrated efficacy and safety, and a better understanding of specific interactions within the plant, pathogen and environment. © 2020 Society of Chemical Industry.
        2. Recent advances in the synthesis of 4'-truncated nucleoside phosphonic acid analogues
        Guang Huan Shen, Joon Hee Hong Carbohydr Res. 2022 Mar;513:108517. doi: 10.1016/j.carres.2022.108517.Epub 2022 Feb 7.
        The synthesis of five series of 4'-truncated nucleoside phosphonic acid analogues is discussed in this review: (1) 4'-truncated furanose nucleoside phosphonic acid analogues; (2) 4'-truncated pyrrolidine nucleoside phosphonic acid analogues; (3) 4'-truncated carbocyclic nucleoside phosphonic acid analogues; (4) 4'-truncated isoxazole nucleoside phosphonic acid analogues; (5) 4'-truncated miscellaneous nucleoside phosphonic acid analogues. Five different ways are used to make the phosphonate moiety: (i) Michaelis-Arbuzov reaction of RX (X = Br, I, OTf) with trialkyl phosphate; (ii) Lewis acid catalyzed Michaelis-Arbuzov reaction of glycoside with trialkyl phosphite; (iii) nucleophilic addition of a dialkyl phosphite to a carbonyl group; (iv) direct coupling reaction with amino alkyl phosphonate; (v) de novo synthesis of phosphonated-isoxazole and 1,3-dioxolane heterocycles from phosphonated starting materials. Their biological activity results are briefly discussed.
        3. Phosphonic acid: preparation and applications
        Charlotte M Sevrain, Mathieu Berchel, Hélène Couthon, Paul-Alain Jaffrès Beilstein J Org Chem. 2017 Oct 20;13:2186-2213. doi: 10.3762/bjoc.13.219.eCollection 2017.
        The phosphonic acid functional group, which is characterized by a phosphorus atom bonded to three oxygen atoms (two hydroxy groups and one P=O double bond) and one carbon atom, is employed for many applications due to its structural analogy with the phosphate moiety or to its coordination or supramolecular properties. Phosphonic acids were used for their bioactive properties (drug, pro-drug), for bone targeting, for the design of supramolecular or hybrid materials, for the functionalization of surfaces, for analytical purposes, for medical imaging or as phosphoantigen. These applications are covering a large panel of research fields including chemistry, biology and physics thus making the synthesis of phosphonic acids a determinant question for numerous research projects. This review gives, first, an overview of the different fields of application of phosphonic acids that are illustrated with studies mainly selected over the last 20 years. Further, this review reports the different methods that can be used for the synthesis of phosphonic acids from dialkyl or diaryl phosphonate, from dichlorophosphine or dichlorophosphine oxide, from phosphonodiamide, or by oxidation of phosphinic acid. Direct methods that make use of phosphorous acid (H3PO3) and that produce a phosphonic acid functional group simultaneously to the formation of the P-C bond, are also surveyed. Among all these methods, the dealkylation of dialkyl phosphonates under either acidic conditions (HCl) or using the McKenna procedure (a two-step reaction that makes use of bromotrimethylsilane followed by methanolysis) constitute the best methods to prepare phosphonic acids.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket