17-ODYA - CAS 34450-18-5

17-Octadecynoic acid is a suicide inhibitor of LTB4 ω-oxidase. 17-ODYA can completely inhibit the bradykinin-dependent transport of sodium chloride in rat TALH cells at a concentration of 10 µM.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C18H32O2
Molecular Weight
280.45

17-ODYA

    • Specification
      • Purity
        ≥98% by HPLC
        Storage
        Powder, -20°C, 3 years; In solvent, -80°C, 6 months; -20°C, 1 month
        Shipping
        Room temperature in continental US; may vary elsewhere.
        IUPAC Name
        octadec-17-ynoic acid
        Synonyms
        Alkynyl Stearic Acid;17-Octadecynoic acid
    • Properties
      • InChI Key
        DZIILFGADWDKMF-UHFFFAOYSA-N
        InChI
        InChI=1S/C18H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h1H,3-17H2,(H,19,20)
        Canonical SMILES
        C#CCCCCCCCCCCCCCCCC(=O)O
    • Reference Reading
      • 1.Involvement of NO and EDHF in flow-induced vasodilation in isolated hamster cremasteric arterioles.
        Watanabe S;Yashiro Y;Mizuno R;Ohhashi T J Vasc Res. 2005 Mar-Apr;42(2):137-47. Epub 2005 Jan 26.
        Flow-induced vasodilation in hamster cremasteric arterioles was investigated with special reference to the roles of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF). Arterioles (approximately 60 microm resting diameter) were cannulated, and suffused with MOPS solution at 37 degrees C (mean intraluminal pressure: 80 cm H(2)O). Step increases in the perfusate flow elicited a dose-dependent vasodilation, which was almost proportional to the increases in calculated wall shear stress (WSS). N(omega)-nitro L-arginine methyl ester (L-NAME, 100 microM) reduced the flow-induced vasodilation by approximately 50%, whereas indomethacin (10 microM) produced no significant effect. In the presence of L-NAME, the residual vasodilation was eliminated by treatment with the cytochrome P-450 monooxygenase inhibitor 17-octadecynoic acid (17-ODYA, 50 microM), sulfaphenazol (10 microM), tetraethylammonium (TEA, 3 mM; a nonselective Ca(2+)-activated K(+) channel inhibitor), or charybdotoxin (ChTX, 0.1 microM; intermediate or large conductance Ca(2+)-activated K(+) channel inhibitor). In the absence of L-NAME, the dilation was also reduced by approximately 50% by treatment with 17-ODYA, TEA, or ChTX.
        2.Influence of cytochrome P-450 inhibitors on endothelium-dependent nitro-L-arginine-resistant relaxation and cromakalim-induced relaxation in rat mesenteric arteries.
        Van de Voorde J;Vanheel B J Cardiovasc Pharmacol. 1997 Jun;29(6):827-32.
        In several blood vessels, endothelium-dependent vasorelaxation is in part mediated by an endothelium-derived hyperpolarizing factor (EDHF), the nature of which is as yet unknown. However, some evidence suggests that EDHF might be a cytochrome P-450-dependent monooxygenase metabolite of arachidonic acid. By using isometric tension measurements on rat main mesenteric arteries, the influence of four structurally and mechanistically different cytochrome P-450 inhibitors (proadifen, miconazole, 1-amino-benzotriazole, and 17-octadecynoic acid) was investigated on relaxations elicited by EDHF, assessed as the nitro-L-arginine-resistant component of acetylcholine-induced relaxation, and on relaxations provoked by the endothelium-independent potassium channel opener cromakalim. Proadifen (30 microM) inhibited the EDHF- as well as the cromakalim-induced relaxation, but not that elicited by nitroprusside. Also miconazole (30 microM) inhibited both the EDHF and the cromakalim-induced relaxation. On the other hand, 17-octadecynoic acid (5 microM) had no influence, and 1-aminobenzotriazole (1 mM) even potentiated EDHF- and cromakalim-induced relaxations. We conclude that the EDHF, released from the rat mesenteric artery by acetylcholine, is unlikely to be a cytochrome P-450-dependent monooxygenase metabolite of arachidonic acid and that proadifen and miconazole interfere with the action of cromakalim.
        3.20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles.
        Zou AP;Fleming JT;Falck JR;Jacobs ER;Gebremedhin D;Harder DR;Roman RJ Am J Physiol. 1996 Jan;270(1 Pt 2):R228-37.
        The present study examined the effects of 20-hydroxyeicosatetraenoic acid (20-HETE) and 17-octadecynoic acid (17-ODYA), an inhibitor of the metabolism of arachidonic acid by P-450, on K(+)-channel activity in vascular smooth muscle cells (VSM) isolated from renal arterioles of the rat. Two types of K+ channels were characterized using inside-out excised membrane patches. One channel exhibited a large conductance (250.3 +/- 5 pS), was activated by membrane depolarization and elevations in cytoplasmic Ca2+ concentration, and was blocked by low concentrations (< 1 mM) of tetraethylammonium (TEA). The other K+ channel exhibited an intermediate conductance (46.3 +/- pS), was activated by membrane depolarization but not by changes in intracellular Ca2+ concentration, and was blocked by 4-aminopyridine (5 mM). Addition of 20-HETE to the bath (1-100 nM), reduced the frequency of opening of the large-conductance Ca(2+)-activated K+ channel recorded using cell-attached patches on VSM. It had no effect on the intermediate-conductance K+ channel: 17-ODYA (1 microM) increased the activity of the large-conductance Ca(2+)-activated K+ channel, and this effect was reversed by 20-HETE (10 nM). 20-HETE (1-1000 nM) reduced the diameter of isolated perfused small renal arteries of the rat by approximately 15% TEA (1 mM) blocked the vasoconstrictor response to 20-HETE (100 nM).
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket