1. Interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors: an updated patent review (2016-2018)
William T McElroy Expert Opin Ther Pat . 2019 Apr;29(4):243-259. doi: 10.1080/13543776.2019.1597850.
Introduction:Interleukin-1 receptor-associated kinase 4 (IRAK4) is the most upstream kinase in Toll/Interleukin-1 receptor (TIR) signaling. Human and rodent genetics support the role of IRAK4 in immune function and the involvement of IRAK4-dependent signaling in certain cancers is hypothesized. The accumulating evidence has motivated the discovery of IRAK4 inhibitors that could be used therapeutically.Areas covered:This review summarizes patents published in 2016-2018 claiming IRAK4 inhibitors. Representative analogues from each patent are presented with a focus on compounds that have been profiled in cellular and in vivo assays.Expert opinion:The last three years have seen an increased number of IRAK4 inhibitors with which to assess the therapeutic potential of the target. At least 5 companies are believed to have advanced to the clinic. Pfizer is in phase II for rheumatoid arthritis (RA). The outcomes of these studies should inform on the therapeutic potential in autoimmune disease and cancer.
2. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation
Yu-Wen Su, Tsung-Hsien Chuang, Kuo-I Lin, Chao-Yang Lai, Li-Chung Hsu J Immunol Res . 2017;2017:7807313. doi: 10.1155/2017/7807313.
Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed,Antrodia cinnamomeaextract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.
3. Central IRAK-4 kinase inhibition for the treatment of pain following nerve injury in rats
Duygu Krings, Katrien Pletinckx, André Welbers, David A Rider, Torsten R Dunkern Brain Behav Immun . 2020 Aug;88:781-790. doi: 10.1016/j.bbi.2020.05.035.
There is ample evidence for the role of the immune system in developing chronic pain following peripheral nerve injury. Especially Toll-like receptors (TLRs) and their associated signaling components and pro-inflammatory cytokines such as IL-1β, induced after injury, are involved in nociceptive processes and believed to contribute to the manifestation of chronic neuropathic pain states. Whereas the inhibition of the kinase function of IRAK-4, a central kinase downstream of TLRs and IL-1 receptors (IL-1Rs), seems efficacious in various chronic inflammatory and autoimmune models, it's role in regulating chronic neuropathic pain remained elusive to date. Here, we examined whether pharmacological inhibition of IRAK-4 kinase activity using PF-06650833 and BMS-986147, two clinical-stage kinase inhibitors, is effective for controlling persistent pain following nerve injury. Both inhibitors potently inhibited TLR-triggered cytokine release in human peripheral blood mononuclear cell (PBMC) as well as human and rat whole blood cultures. BMS-986147 showing favorable pharmacokinetic (PK) properties, significantly inhibited R848-triggered plasma TNF levels in a rat in vivo cytokine release model after single oral dosing. However, BMS-986147 dose dependently reversed cold allodynia in a rat chronic constriction injury (CCI) model following intrathecal administration only, supporting the notion that central neuro-immune modulation is beneficial for treating chronic neuropathic pain. Although both inhibitors were efficacious in inhibiting IL-1β- or TLR-triggered cytokine release in rat dorsal root ganglion cultures, only partial efficacy was reached in IL-1β-stimulated human glial cultures indicating that inhibiting IRAK-4́'s kinase function might be partially dispensable for human IL-1β driven neuroinflammation. Overall, our data demonstrate that IRAK-4 inhibitors could provide therapeutic benefit in chronic pain following nerve injury, and the central driver for efficacy in the neuropathic pain model as well as potential side effects of centrally available IRAK-4 inhibitors warrant further investigation to develop effective analgesia for patients in high unmet medical need.