1.Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton's tyrosine kinase.
Mina-Osorio P1, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, Lau KY, Hang J, Postelnek J, Kim Y, Min S, Patel A, Woods J, Ramanujam M, DeMartino J, Narula S, Xu D. Arthritis Rheum. 2013 Sep;65(9):2380-91. doi: 10.1002/art.38047.
OBJECTIVE: Bruton's tyrosine kinase (BTK) plays a critical role in B cell development and function. We recently described a selective BTK inhibitor, RN486, that blocks B cell receptor (BCR) and Fcγ receptor signaling and is efficacious in animal models of arthritis. The aim of this study was to examine the potential efficacy of BTK in systemic lupus erythematosus (SLE), using an NZB × NZW mouse model of spontaneous SLE.
2.Structure-based drug design of RN486, a potent and selective Bruton's tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis.
Lou Y1, Han X, Kuglstatter A, Kondru RK, Sweeney ZK, Soth M, McIntosh J, Litman R, Suh J, Kocer B, Davis D, Park J, Frauchiger S, Dewdney N, Zecic H, Taygerly JP, Sarma K, Hong J, Hill RJ, Gabriel T, Goldstein DM, Owens TD. J Med Chem. 2015 Jan 8;58(1):512-6. doi: 10.1021/jm500305p. Epub 2014 Apr 16.
Structure-based drug design was used to guide the optimization of a series of selective BTK inhibitors as potential treatments for Rheumatoid arthritis. Highlights include the introduction of a benzyl alcohol group and a fluorine substitution, each of which resulted in over 10-fold increase in activity. Concurrent optimization of drug-like properties led to compound 1 (RN486) ( J. Pharmacol. Exp. Ther. 2012 , 341 , 90 ), which was selected for advanced preclinical characterization based on its favorable properties.
3.RN486, a selective Bruton's tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents.
Xu D1, Kim Y, Postelnek J, Vu MD, Hu DQ, Liao C, Bradshaw M, Hsu J, Zhang J, Pashine A, Srinivasan D, Woods J, Levin A, O'Mahony A, Owens TD, Lou Y, Hill RJ, Narula S, DeMartino J, Fine JS. J Pharmacol Exp Ther. 2012 Apr;341(1):90-103. doi: 10.1124/jpet.111.187740. Epub 2012 Jan 6.
Genetic mutation and pharmacological inhibition of Bruton's tyrosine kinase (Btk) both have been shown to prevent the development of collagen-induced arthritis (CIA) in mice, providing a rationale for the development of Btk inhibitors for treating rheumatoid arthritis (RA). In the present study, we characterized a novel Btk inhibitor, 6-cyclopropyl-8-fluoro-2-(2-hydroxymethyl-3-{1-methyl-5-[5-(4-methyl-piperazin-1-yl)-pyridin-2-ylamino]-6-oxo-1,6-dihydro-pyridin-3-yl}-phenyl)-2H-isoquinolin-1-one (RN486), in vitro and in rodent models of immune hypersensitivity and arthritis. We demonstrated that RN486 not only potently and selectively inhibited the Btk enzyme, but also displayed functional activities in human cell-based assays in multiple cell types, blocking Fcε receptor cross-linking-induced degranulation in mast cells (IC(50) = 2.9 nM), Fcγ receptor engagement-mediated tumor necrosis factor α production in monocytes (IC(50) = 7.0 nM), and B cell antigen receptor-induced expression of an activation marker, CD69, in B cells in whole blood (IC(50) = 21.