1. Chemical constituents from branch of Fraxinus sieboldiana
Sheng Lin, Yan-ling Zhang, Ming-tao Liu, Jia-chen Zi, Mao-luo Gan, Wei-xia Song, Xiao-na Fan, Xiao-na Wang, Yong-chun Yang, Jian-gong Shi Zhongguo Zhong Yao Za Zhi. 2015 Jul;40(13):2602-11.
Using a combination of various chromatographic techniques including column chromatography over silica gel, Sephadex LH-20, macroporous adsorbent resin, and reversed-phase HPLC, 115 compounds including diterpenes, sesquiterpenes, treterpenes, coumarins, lignans, fatty acid derivatives, and simple aromatic derivatives were isolated from an ethanol extract of branch of Fraxinus sieboldiana (Oleaceaue), and their structures of the compounds were elucidated by spectroscopic methods including 1 D, 2D NMR and MS techniques. Among them, 41 compounds were new. In previous reports, we have been described the isolation, structure elucidation, and bioactivities of the 41 new compounds and 22 known orii including 8 coumarins, 4 phenolic and 12 phenylethanoidal glycosides. As a consequence, we herein reported the isolation and structure elucidation of the remaining 50 known compounds including 8- hydroxy-12-oxoabieta-9(11),13-dien-20-oic 8, 20-lactone(1), 6beta-hydroxyfcrruginol(2),(+)-pisiferic acid(3), (+)-pisiferal(4),(+)-7-dehydroabiet6none(5), 1-oxomiltirone(6), subdigitatone(7), linarionoside B(8), (9S)-linarionoside B(9), (3R,9R)-3-hydroxy-7,8-dihydro-beta-ionol 9-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside(10), ursolic acid(11), betulinic acid(12), euscaphic acid(13), (+)-syringaresinol(14), (+)-fraxiresinol(15), (+)-1-hydroxysyringaresinol(16), pinoresinol(17), medioresinol(18), 8-acetoxypinoresinol(19), epipinoresinol(20), (-)-olivil(21), (+)-cyclo-olivil(22), 3,3'-dimethoxy-4,4',9-trihydroxy-7,9'-epoxylignan-7'-one(23),(+)-1-hydroxypinoresinol 4'-O-beta-D-glucopyranoside (24), (+)-1-hydroxypinoresinol 4"-O-beta-D-glucopyranoside(25),(+)-syringaresinol O-beta-D-glucopyranoside (26), liriodendrin (27), ehletianol D(28), icariside E5(29) (-)-(7R, 8R)-threo-1-C-syringylglycerol(30),(-)-(7R, 8S)-erythro-guaiacylglycerol (31),(-)-(7R, 8R)-threo-guaiacylglycerol(32), 3-(4-beta-D-glucopyranosyloxy-3-methoxy)-phenyl-2E-propenol(33),2,3-dihydroxy-l-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(34), 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone (35), 3-hydroxy-l-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone(36), omega-hydroxypropioguaiacone(37), sinapyladehyde(38), trans-p-hydroxycinnamaldehyde(39), syringic acid(40), vanilic acid(41), vanillin(42), 4-hydroxy-benzaldehyde (43), (24R)-24-ethyl-5alpha-cholestane-3beta,5,6beta-triol(44), beta-sitosterol(45), daucosterol(46), 2,6-dimethoxy-I,4-benzoquinone(47), 2,6-dimethoxy-pyran-4-one(48), 1-(beta-D-ribofuranosyl)uracil(49), and mannitol(50). Compouds 1-7,12,18,28-37,44 and 48 were obtained from the genus Fraxinus for the first time.
2. Moderate Dose of Trolox Preventing the Deleterious Effects of Wi-Fi Radiation on Spermatozoa In vitro through Reduction of Oxidative Stress Damage
Shang-Shu Ding, Ping Sun, Zhou Zhang, Xiang Liu, Hong Tian, Yong-Wei Huo, Li-Rong Wang, Yan Han, Jun-Ping Xing Chin Med J (Engl). 2018 Feb 20;131(4):402-412.doi: 10.4103/0366-6999.225045.
Background:The worsening of semen quality, due to the application of Wi-Fi, can be ameliorated by Vitamin E. This study aimed to demonstrate whether a moderate dose of trolox, a new Vitamin E, inhibits oxidative damage on sperms in vitro after exposure to Wi-Fi radiation.
3. A Milestone: Approval of CEUS for Diagnostic Liver Imaging in Adults and Children in the USA
K Seitz, D Strobel Ultraschall Med. 2016 Jun;37(3):229-32.doi: 10.1055/s-0042-107411.Epub 2016 Jun 8.
The approval of microbubbles with the inert gas sulfur hexafluoride (SF6) and a palmitic acid shell (SonoVue(®), Bracco Geneva, CH) for the diagnostic imaging of liver tumors in adults and children by the FDA in the United States represents a milestone for contrast-enhanced ultrasound (CEUS).This warrants a look back at the history of the development of CEUS. The first publications based on echocardiographic observations of right ventricular contrast phenomena caused by tiny air bubbles following i. v. injection of indocyanine green appeared around 1970 1 2 3. A longer period of sporadic publications but no real progress then followed since, in contrast to X-ray methods, ultrasound works quite well without a contrast agent.It is noteworthy that the foundations for further development were primarily laid in Europe. The development and approval (1991) of the contrast agent Echovist(®) by a German contrast manufacturer for echocardiography unsuitable for passing through lungcapillaries 4 5 resulted in the first extracardiac indications, e. g. for detecting retrovesical reflux and tubal patency, in the mid-1980 s 6 7 8. The sensitivity of color Doppler was not able to compensate for the lack of an ultrasound contrast agent compared to CT with its obligatory contrast administration.Studies of SHU 508 - microbubbles of air moderately stabilized with galactose and palmitic acid - began in 1990 9 10 11 12 13 14 15 and the contrast agent was then introduced in 1995 in Germany as Levovist(®). The most important publications by Blomley, Cosgrove, Leen, and Albrecht are named here on a representative basis 16 17 18 19 20.SHU 508 along with other US contrast agents provided impressive proof of the superiority of CEUS for the diagnosis of liver metastases. However, practical application remained complicated and required skill and technical know-how because of a lack of suitable software on US units 21 22 23 24 25. The monograph regarding the use of contrast agent in the liver by Wermke and Gaßmann is impressive but unfortunately only available in German 26. In addition to being applied in the heart and the liver, CEUS was first used in transcranial applications 27 and in vessels 28, the kidneys 29, and the breast 30. Measurements at transit times were also of particular interest 31. It was difficult to convince ultrasound device manufacturers of the need to adapt US units to US contrast agents and not vice versa.The breakthrough came with low MI phase contrast inversion and the introduction of SonoVue(®) in many European countries in 2001. This more stable US contrast agent is easy to use and is becoming indispensable in diagnostic imaging of the liver 32 33 34 35 36 37 38 39 40. Studies have shown its excellent tolerability 41 and diagnostic reliability comparable to that of MDCT and MRI in the liver 42 43. Today it would be unimaginable to diagnose liver tumors without CEUS 44. This also applies to very small lesions 45 46.EFSUMB published the first CEUS guidelines in 2004 47 which have since been reissued and divided into hepatic 48 and extrahepatic applications 49. The first recommendations regarding quantitative assessment have also been published 50.The increasing scientific interest in CEUS is evident based on the greater number of PubMed hits for Echovist(®) (ca. 130), Levovist(®) (ca. 500) and SonoVue(®) (ca. 1500) as well as on the fact that publications regarding CEUS comprise almost 20 % of UiM/EJU articles in the last 10 years. The number of CEUS articles in UiM/EJU continues to be high 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75.In the clinical reality, CEUS has been able to become established alongside CT and MRI according to the saying "better is the enemy of good" 76 as the method of choice after B-mode ultrasound in the evaluation of liver tumor malignancy in Germany, where the technically challenging method is promoted. In the case of unclear CT and MRI findings, CEUS performed by an experie