1. Carbon Dioxide Capture by a Metal-Organic Framework with Nitrogen-Rich Channels Based on Rationally Designed Triazole-Functionalized Tetraacid Organic Linker
Saona Seth, Govardhan Savitha, Jarugu Narasimha Moorthy Inorg Chem. 2015 Jul 20;54(14):6829-35.doi: 10.1021/acs.inorgchem.5b00722.Epub 2015 Jul 6.
A semirigid tetraacid linker H4L functionalized with 1,2,3-triazole was rationally designed and synthesized to access nitrogen-rich MOFs for selective adsorption of CO2. The cadmium MOF, that is, Cd-L, obtained by the reaction of H4L with Cd(NO3)2, is found to be a 3D porous framework structure that is robust to desolvation. Crystal structure analysis reveals channels that are decorated by the triazole moieties of L. Gas adsorption studies show that Cd-L MOF permits remarkable CO2 uptake to the extent of 99 and 1000 cc/g at 1 and 30 bar, respectively, at 0 °C. While literature survey reveals that MIL-112, constructed from a 1,2,3-triazole functionalized linker, exhibits no porosity to gas adsorption due to structural flexibility, the results with Cd-L MOF described herein emphasize how rigidification of the organic linker improves gas uptake properties of the resultant MOF.
2. Mechanoluminescence and aggregation-enhanced emission (AEE) of an In-MOF based on a 9,9'-diphenyl-9H-fluorene tetraacid linker
Swati Jindal, Gulshan Anjum, Vijay Kumar Maka, Jarugu Narasimha Moorthy Nanoscale. 2021 Jun 3;13(21):9668-9677.doi: 10.1039/d1nr00898f.
A water-stable In-MOF, constructed based on a conformationally-flexible tetraacid linker, i.e., 2,7-bis(3,5-dicarboxyphenyl)-9,9'-diphenyl-9H-fluorene, i.e., H4DPF, is shown to exhibit a significantly enhanced solid-state fluorescence quantum yield (φf) of 23% in comparison with that of the linker (φfca. 4%) as a consequence of rigidification of the latter by metalation. Application of external stimulus in the form of grinding of the In-MOF leads to a drastic enhancement by 29%, φf from 23 to 52%. Solid-state absorption and emission spectra show that the absorption in the region of 368-550 nm gets diminished with a concomitant change in the emission maximum with a blue shift upon grinding. Fluorescence enhancement with grinding is correlated with a gradual reduction in the size of the particles, as established by SEM analysis. MOF particle aggregation has been invoked to account for the observed fluorescence enhancement in addition to a subtle conformational change in the structure of the linker upon grinding. Intriguingly, the ground MOF particles exhibit aggregation behaviour in the DMF-water solvent system with the emission further increasing up to 75% for the increase in the water fraction (fw) from 0 to 60%; hydrophobic aggregation of particles evidently leads to a change in the conformation of the linker and particle aggregation-enhanced emission (AEE). De-aggregation of particles ensues for fw = 70-90%, as reflected by a gradual decrease in the emission intensity. It is shown that the suspension of ground In-MOF particles in water permits sensing of metal ions, in particular Al3+ ions, by fluorescence quenching with detection at a sub-ppb level. The observed results comprise first demonstration of both mechanoluminescence and AEE of MOF particles.
3. Synthesis of a Novel Rigid Semi-Alicyclic Dianhydride and Its Copolymerized Transparent Polyimide Films' Properties
Yao Wang, Xiangfu Liu, Jiulin Shen, Jianqiao Zhao, Guoli Tu Polymers (Basel). 2022 Oct 2;14(19):4132.doi: 10.3390/polym14194132.
A new series of colorless polyimides (CPIs) with outstanding thermal properties and mechanical properties were fabricated by the copolymerization of a novel dianhydride and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with 2,2'-bistrifluoromethyl benzidine (TFDB). The novel dianhydride, 10-oxo-9-phenyl-9-(trifluoromethyl)-9,10-dihydroanthracene-2,3,6,7-tetraacid dianhydride (3FPODA), possessed a rigid semi-alicyclic structure, -CF3 and phenyl side groups, and an active carbonyl group. Benefitting from the special structure of 3FPODA, the glass transition temperatures (Tg) of the new CPIs improved from 330 °C to 377 °C, the coefficient of thermal expansion (CTE) decreased from 46 ppm/K to 24 ppm/K, and the tensile strength (TS), tensile modulus (TM), and elongation at break (EB) increased from 84 MPa to 136 MPa, 3.2 GPa to 4.4 GPa, and 2.94% to 4.13% with the increasing amount of 3FPODA, respectively. Moreover, the active carbonyl group of the 3FPODA could enhance the CPI's adhesive properties. These results render the new dianhydride 3FPODA an ideal candidate monomer for the fabrication of high-performance CPIs.