2-[4-[1-[17-[4-[[(4R,5S)-4,5-Bis(4-chlorophenyl)-4,5-dihydro-2-[4-methoxy-2-(1-methylethoxy)phenyl]-1H-imidazol-1-yl]carbonyl]-2-oxo-1-piperazinyl]-16-oxo-3,6,9,12-tetraoxa-15-azaheptadec-1-yl]-1H-1,2,3-triazol-4-yl]phenyl]-2H-indazole-7-carboxamide

 CAS No.: 2369022-68-2  Cat No.: BPL-200159 4.5  

It can specifically induce PARP1 cleavage and cell apoptosis in the MDA-MB-231 cell line. The PARP superfamily is involved in DNA damage signaling and other important cellular processes.

2-[4-[1-[17-[4-[[(4R,5S)-4,5-Bis(4-chlorophenyl)-4,5-dihydro-2-[4-methoxy-2-(1-methylethoxy)phenyl]-1H-imidazol-1-yl]carbonyl]-2-oxo-1-piperazinyl]-16-oxo-3,6,9,12-tetraoxa-15-azaheptadec-1-yl]-1H-1,2,3-triazol-4-yl]phenyl]-2H-indazole-7-carboxamide

Structure of 2369022-68-2

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
PROTAC Library
Molecular Formula
C58H63Cl2N11O10
Molecular Weight
1145.09

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • Comprehensive PROTAC Platform
  • Scientific Expertise & Technical Support
  • Custom Synthesis & Design Service
  • Extensive Product Coverage
  • Cutting-Edge Innovation
  • Fast Delivery & Global Support
  • 24/7 customer service
  • 100% quality assurance
Popular Publications Citing BOC Sciences Products
Solubility
10 mM in DMSO
Storage
Please store the product under the recommended conditions in the Certificate of Analysis.
Shipping
Room temperature in continental US; may vary elsewhere
Synonyms
2-[4-[1-[2-[2-[2-[2-[2-[[2-[4-[(4R,5S)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazole-1-carbonyl]-2-oxopiperazin-1-yl]acetyl]amino]ethoxy]ethoxy]ethoxy]ethoxy]ethyl]triazol-4-yl]phenyl]indazole-7-carboxamide
Density
1.39±0.1 g/cm3
InChI Key
RQWKTYKJNCZUJW-OMUYKDLESA-N
InChI
InChI=1S/C58H63Cl2N11O10/c1-38(2)81-50-33-46(76-3)19-20-47(50)57-63-54(40-7-13-43(59)14-8-40)55(41-9-15-44(60)16-10-41)71(57)58(75)68-23-22-67(52(73)37-68)36-51(72)62-21-25-77-27-29-79-31-32-80-30-28-78-26-24-69-35-49(64-66-69)39-11-17-45(18-12-39)70-34-42-5-4-6-48(56(61)74)53(42)65-70/h4-20,33-35,38,54-55H,21-32,36-37H2,1-3H3,(H2,61,74)(H,62,72)/t54-,55+/m1/s1
Canonical SMILES
CC(C)OC1=C(C=CC(=C1)OC)C2=NC(C(N2C(=O)N3CCN(C(=O)C3)CC(=O)NCCOCCOCCOCCOCCN4C=C(N=N4)C5=CC=C(C=C5)N6C=C7C=CC=C(C7=N6)C(=O)N)C8=CC=C(C=C8)Cl)C9=CC=C(C=C9)Cl
1. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer
Ge Li, Shan-Shan Lin, Ze-Lei Yu, Xin-Hua Wu, Jing-Wen Liu, Gui-Hui Tu, Quan-Yu Liu, Yuan-Ling Tang, Qing-Na Jiang, Jian-Hua Xu, Qing-Ling Huang, Li-Xian Wu Biochem Pharmacol. 2022 Dec;206:115329.doi: 10.1016/j.bcp.2022.115329.Epub 2022 Oct 27.
Therapeutic targeting of the nuclear enzyme poly (ADP-ribose) polymerase 1 (PARP1) with PARP inhibitors (PARPis) in patients with a homologous recombination (HR)- deficient phenotype based on the mechanism of synthetic lethality has been shown tremendous success in cancer therapy. With the clinical use of various PARPis, emerging evidence has shown that some PARPis offer hope for breakthroughs in triple-negative breast cancer (TNBC) therapy, regardless of HR status. However, similar to other conventional cytotoxic drugs, PARPis are also subject to the intractable problem of drug resistance. Notably, acquired resistance to PARPis caused by point mutations in the PARP1 protein is hard to overcome with current strategies. To explore modalities to overcome resistance and identify patients who are most likely to benefit from PARP1-targeted therapy, we developed a proteolysis-targeted chimaera (PROTAC) to degrade mutant PARP1 in TNBC. Here, we investigated a PARP1 PROTAC termed "NN3″, which triggered ubiquitination and proteasome-mediated degradation of PARP1. Moreover, NN3 degraded PARP1 with resistance-related mutations. Interestingly, compared with other reported PARP1 degraders, NN3 exhibited a unique antitumor mechanism in p53-positive breast cancer cells that effectively promoted ferroptosis by downregulating the SLC7A11 pathway. Furthermore, NN3 showed potent activity and low toxicity in vivo. In conclusion, we propose PROTAC-mediated degradation of PARP1 as a novel strategy against mutation-related PARPi resistance and a paradigm for targeting breast cancer with functional p53 via ferroptosis induction.
2. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy
Xiaopeng Peng, Wanyi Pan, Feng Jiang, Weiming Chen, Zetao Qi, Weijie Peng, Jianjun Chen Pharmacol Res. 2022 Dec;186:106529.doi: 10.1016/j.phrs.2022.106529.Epub 2022 Oct 31.
Poly ADP-ribose polymerase (PARP) plays a critical role in many cellular processes such as DNA damage repair, gene transcription and cell apoptosis. Therefore, targeting PARP represents a promising strategy for cancer therapy. To date, numerous small molecule PARP1 inhibitors have been identified, but many of them suffer from limited clinical efficacy and serious toxicity. Hence, PARP1 inhibitor-based combination therapies, and other PARP1 modulators (e.g. PROTAC degraders, dual acting agents) have attracted great attention with significant advancements achieved in the past few years. In this review, we overviewed the recent progress on PARP1-based drug discovery with a focus on PARP1 inhibitor-based drug combination therapy and other PARP1-targeting strategies (e.g. selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors). In addition, we also summarized the reported co-crystal structures of PARP1 inhibitors in complex with their target proteins as well as the binding interactions. Finally, the challenges and future directions for PARP-based drug discovery in cancer therapy are also discussed in detail.
3. Discovery of CN0 as a novel proteolysis-targeting chimera (PROTAC) degrader of PARP1 that can activate the cGAS/STING immunity pathway combined with daunorubicin
Shanshan Lin, Guihui Tu, Zelei Yu, Qingna Jiang, Lingyu Zhang, Jingwen Liu, Quanyu Liu, Xiuwang Huang, Jianhua Xu, Youwen Lin, Yang Liu, Lixian Wu Bioorg Med Chem. 2022 Sep 15;70:116912.doi: 10.1016/j.bmc.2022.116912.Epub 2022 Jul 8.
Poly ADP-ribose polymerase 1 (PARP1) plays an essential role in DNA repair signaling, rendering it an attractive target for cancer treatment. Despite the success of PARP1 inhibitors (PARPis), only a few patients can currently benefit from PARPis. Moreover, drug resistance to PARPis occurs during clinical treatment. Natural and acquired resistance to PARPis has forced us to seek new therapeutic approaches that target PARP1. Here, we synthesized a series of compounds by proteolysis-targeting chimera (PROTAC) technology to directly degrade the PARP1 protein. We found that CN0 (compound 3) with no polyethylene glycol (PEG) linker can degrade the PARP1 protein through the proteasome pathway. More importantly, CN0 could inhibit DNA damage repair, resulting in highly efficient accumulation of cytosolic DNA fragments due to unresolved unrepaired DNA lesions when combined with daunorubicin (DNR). Therefore, CN0 can activate the cyclic GMP-AMP synthase/stimulator of the interferon gene (cGAS/STING) pathway of innate immunity and then spread the resulting inflammatory signals, thereby reshaping the tumor microenvironment, which may eventually enhance T cell killing of tumor cells.

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket