Ac4GlcNAlk

 CAS No.: 1361993-37-4  Cat No.: BP-501653 4.5  

Ac4GlcNAlk is a PROTAC linker, which is composed of alkyl chains. Ac4GlcNAlk can be used to synthesize a range of PROTACs.

Ac4GlcNAlk

Structure of 1361993-37-4

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
PROTAC Linker
Molecular Formula
C₁₉H₂₅NO₁₀
Molecular Weight
427.40

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • mg to g scale for early stage;
  • CDMO and CMO support.
  • 24/7 customer service;
  • 100% quality assurance;
  • Efficient global delivery;
  • Over 95% customer satisfaction.
Popular Publications Citing BOC Sciences Products
Storage
Please store the product under the recommended conditions in the Certificate of Analysis.
Shipping
Room temperature in continental US; may vary elsewhere.
IUPACName
[(2R,3S,4R,5R)-3,4,6-triacetyloxy-5-(pent-4-ynoylamino)oxan-2-yl]methyl acetate
Synonyms
N-(4-pentynoyl)-glucosamine-tetraacylated (Ac4GlcAl)
InChI Key
PODQGPKRSTUNAT-ULAPBGCESA-N
InChI
InChI=1S/C19H25NO10/c1-6-7-8-15(25)20-16-18(28-12(4)23)17(27-11(3)22)14(9-26-10(2)21)30-19(16)29-13(5)24/h1,14,16-19H,7-9H2,2-5H3,(H,20,25)/t14-,16-,17-,18-,19?/m1/s1
Canonical SMILES
CC(=O)OCC1C(C(C(C(O1)OC(=O)C)NC(=O)CCC#C)OC(=O)C)OC(=O)C
1. Optimization of Metabolic Oligosaccharide Engineering with Ac4GalNAlk and Ac4GlcNAlk by an Engineered Pyrophosphorylase
Anna Cioce, Ganka Bineva-Todd, Anthony J Agbay, Junwon Choi, Thomas M Wood, Marjoke F Debets, William M Browne, Holly L Douglas, Chloe Roustan, Omur Y Tastan, Svend Kjaer, Jacob T Bush, Carolyn R Bertozzi, Benjamin Schumann ACS Chem Biol. 2021 Oct 15;16(10):1961-1967. doi: 10.1021/acschembio.1c00034.Epub 2021 Apr 9.
Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket