Biotin-PEG4-NHS ester

 CAS No.: 459426-22-3  Cat No.: BP-500061  Purity: >97% 4.5  

A PEGylated NHS-activated biotin reagent for covalent attachment to primary amines on biomolecules. Buy fluorescent probes online from a fluorescent dye supplier for consistent performance.

Biotin-PEG4-NHS ester

Structure of 459426-22-3

Quality
Assurance

Worldwide
Delivery

24/7 Customer
Support
Category
PROTAC Linker
Molecular Formula
C25H40N4O10S
Molecular Weight
588.67
Appearance
Solid powder

* For research and manufacturing use only. Not for human or clinical use.

SizePriceStockQuantity
-- $-- In stock

Looking for different specifications? Click to request a custom quote!

Capabilities & Facilities

  • mg to g scale for early stage;
  • CDMO and CMO support.
  • 24/7 customer service;
  • 100% quality assurance;
  • Efficient global delivery;
  • Over 95% customer satisfaction.
Popular Publications Citing BOC Sciences Products
Purity
>97%
Solubility
In DMSO: 125 mg/mL (212.34 mM; Need ultrasonic)
Appearance
Solid powder
Storage
-20°C, protect from light. The solution be prepared immediately before its experimental application.
Shipping
Room temperature in continental US; may vary elsewhere.
IUPACName
(2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-[5-[(3aS,4S,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]ethoxy]ethoxy]ethoxy]ethoxy]propanoate
Synonyms
3-[2-[2-[2-[2-[[5-[(3aS,4S,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-1-oxopentyl]amino]ethoxy]ethoxy]ethoxy]ethoxy]propanoic acid (2,5-dioxo-1-pyrrolidinyl) ester; (2,5-dioxopyrrolidin-1-yl) 3-[2-[2-[2-[2-[5-[(3aS,4S,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]ethoxy]ethoxy]ethoxy]ethoxy]propanoate
Density
1.3±0.1 g/cm3
InChI Key
DTLVBHCSSNJCMJ-JXQFQVJHSA-N
InChI
InChI=1S/C25H40N4O10S/c30-20(4-2-1-3-19-24-18(17-40-19)27-25(34)28-24)26-8-10-36-12-14-38-16-15-37-13-11-35-9-7-23(33)39-29-21(31)5-6-22(29)32/h18-19,24H,1-17H2,(H,26,30)(H2,27,28,34)/t18-,19-,24-/m0/s1
Canonical SMILES
C1CC(=O)N(C1=O)OC(=O)CCOCCOCCOCCOCCNC(=O)CCCCC2C3C(CS2)NC(=O)N3
1. Catalytic antibodies
A Tramontano, R A Lerner, K D Janda Science . 1986 Dec 19;234(4783):1566-70. doi: 10.1126/science.3787261.
Monoclonal antibodies elicited to haptens that are analogs of the transition state for hydrolysis of carboxylic esters behaved as enzymic catalysts with the appropriate substrates. These substrates are distinguished by the structural congruence of both hydrolysis products with haptenic fragments. The haptens were potent inhibitors of this esterolytic activity, in agreement with their classification as transition state analogs. Mechanisms are proposed to account for the different chemical behavior of these antibodies with two types of ester substrates. The generation of an artificial enzyme through transition state stabilization by antibodies was thus demonstrated. These studies indicate a potentially general approach to catalyst design.
2. Lactose esters: synthesis and biotechnological applications
Maciej Guzik, Jakub Staroń, Janusz M Dąbrowski, Ewelina Cichoń Crit Rev Biotechnol . 2018 Mar;38(2):245-258. doi: 10.1080/07388551.2017.1332571.
Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.e. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.
3. Palladium-Catalyzed Tandem Ester Dance/Decarbonylative Coupling Reactions
Eisuke Ota, Naomi Inayama, Junichiro Yamaguchi, Masayuki Kubo Org Lett . 2022 Jun 3;24(21):3855-3860. doi: 10.1021/acs.orglett.2c01432.
"Dance reaction" on the aromatic ring is a powerful method in organic chemistry to translocate functional groups on arene scaffolds. Notably, dance reactions of halides and pseudohalides offer a unique platform for the divergent synthesis of substituted (hetero)aromatic compounds when combined with transition-metal-catalyzed coupling reactions. Herein, we report a tandem reaction of ester dance and decarbonylative coupling enabled by palladium catalysis. In this reaction, 1,2-translocation of the ester moiety on the aromatic ring is followed by decarbonylative coupling with nucleophiles to enable the installation of a variety of nucleophiles at the position adjacent to the ester in the starting material.
ConcentrationVolumeMass1 mg5 mg10 mg
1 mM1.6987 mL8.4937 mL16.9874 mL
5 mM0.3397 mL1.6987 mL3.3975 mL
10 mM0.1699 mL0.8494 mL1.6987 mL

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Related Product Recommendations

BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
Germany
Inquiry Basket