1. On the hydrolysis of diethyl 2-(perfluorophenyl)malonate
Ilya V Taydakov, Mikhail A Kiskin Beilstein J Org Chem. 2020 Jul 28;16:1863-1868.doi: 10.3762/bjoc.16.153.eCollection 2020.
Diethyl 2-(perfluorophenyl)malonate was synthesized in 47% isolated yield by the reaction of sodium diethyl malonate and hexafluorobenzene. The resulting compound was considered as a starting material for synthesizing 2-(perfluorophenyl)malonic acid by hydrolysis. It was found that the desired 2-(perfluorophenyl)malonic acid could not be obtained from this ester by hydrolysis, neither under basic nor under acidic conditions. Nevertheless, hydrolysis of the ester with a mixture of HBr and AcOH gave 2-(perfluorophenyl)acetic acid in a good preparative yield of 63%. A significant advantage of this new approach to 2-(perfluorophenyl)acetic acid is that handling toxic substances such as cyanides and perfluorinated benzyl halides is avoided.
2. Selective Esterification of Phosphonic Acids
Damian Trzepizur, Anna Brodzka, Dominik Koszelewski, Ryszard Ostaszewski Molecules. 2021 Sep 17;26(18):5637.doi: 10.3390/molecules26185637.
Here, we report straightforward and selective synthetic procedures for mono- and diesterification of phosphonic acids. A series of alkoxy group donors were studied and triethyl orthoacetate was found to be the best reagent as well as a solvent for the performed transformations. An important temperature effect on the reaction course was discovered. Depending on the reaction temperature, mono- or diethyl esters of phosphonic acid were obtained exclusively with decent yields. The substrate scope of the proposed methodology was verified on aromatic as well as aliphatic phosphonic acids. The designed method can be successfully applied for small- and large-scale experiments without significant loss of selectivity or reaction yield. Several devoted experiments were performed to give insight into the reaction mechanism. At 30 °C, monoesters are formed via an intermediate (1,1-diethoxyethyl ester of phosphonic acid). At higher temperatures, similar intermediate forms give diesters or stable and detectable pyrophosphonates which were also consumed to give diesters. 31P NMR spectroscopy was used to assign the structure of pyrophosphonate as well as to monitor the reaction course. No need for additional reagents and good accessibility and straightforward purification are the important aspects of the developed protocols.
3. Synthesis and Characterization of New Conjugated Azomethines End-Capped with Amino-thiophene-3,4-dicarboxylic Acid Diethyl Ester
Agnieszka Katarzyna Pająk, Sonia Kotowicz, Paweł Gnida, Jan Grzegorz Małecki, Agnieszka Ciemięga, Adam Łuczak, Jarosław Jung, Ewa Schab-Balcerzak Int J Mol Sci. 2022 Jul 24;23(15):8160.doi: 10.3390/ijms23158160.
A new series of thiophene-based azomethines differing in the core structure was synthesized. The effect of the central core structure in azomethines on the thermal, optical and electrochemical properties was investigated. The obtained compounds exhibited the ability to form a stable amorphous phase with a high glass transition temperature above 100 °C. They were electrochemically active and undergo oxidation and reduction processes. The highest occupied (HOMO) and the lowest unoccupied molecular (LUMO) orbitals were in the range of -3.86--3.60 eV and -5.46--5.17 eV, respectively, resulting in a very low energy band gap below 1.7 eV. Optical investigations were performed in the solvents with various polarity and in the solid state as a thin film deposited on a glass substrate. The synthesized imines absorbed radiation from 350 to 600 nm, depending on its structure and showed weak emission with a photoluminescence quantum yield below 2.5%. The photophysical investigations were supported by theoretical calculations using the density functional theory. The synthesized imines doped with lithium bis-(trifluoromethanesulfonyl)imide were examined as hole transporting materials (HTM) in hybrid inorganic-organic perovskite solar cells. It was found that both a volume of lithium salt and core imine structure significantly impact device performance. The best power conversion efficiency (PCE), being about 35-63% higher compared to other devices, exhibited cells based on the imine containing a core tiphenylamine unit.