PROTAC RIPK degrader-2 - CAS 1801547-16-9

PROTAC RIPK degrader-2 is a nonpeptidic PROTAC which potently targets serine-threonine kinase RIPK2 and has highly selectivity for RIPK2 degradation.

* Please be kindly noted that our services and products can only be used for research to organizations or companies and not intended for any clinical or individuals.

Molecular Formula
C52H65N7O11S3
Molecular Weight
1060.31

PROTAC RIPK degrader-2

    • Specification
      • Purity
        99%
        Solubility
        Soluble in DMSO
        Appearance
        Solid Powder
        Storage
        Store at -20°C
        IUPAC Name
        (2S,4R)-1-[(2S)-2-[[2-[2-[2-[2-[2-[4-(1,3-benzothiazol-5-ylamino)-6-tert-butylsulfonylquinolin-7-yl]oxyethoxy]ethoxy]ethoxy]ethoxy]acetyl]amino]-3,3-dimethylbutanoyl]-4-hydroxy-N-[[4-(4-methyl-1,3-thiazol-5-yl)phenyl]methyl]pyrrolidine-2-carboxamide
        Synonyms
        RGN47169; RGN 47169; RGN-47169; (2S,4R)-1-((S)-17-((4-(Benzo[d]thiazol-5-ylamino)-6-(tert-butylsulfonyl)quinolin-7-yl)oxy)-2-(tert-butyl)-4-oxo-6,9,12,15-tetraoxa-3-azaheptadecan-1-oyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide; N-[14-({4-(1,3-Benzothiazol-5-ylamino)-6-[(2-methyl-2-propanyl)sulfonyl]-7-quinolinyl}oxy)-3,6,9,12-tetraoxatetradecan-1-oyl]-3-methyl-L-valyl-(4R)-4-hydroxy-N-[4-(4-methyl-1,3-thiazol-5-yl)benzyl]-L-prolinamide; L-Prolinamide, N-[14-[[4-(5-benzothiazolylamino)-6-[(1,1-dimethylethyl)sulfonyl]-7-quinolinyl]oxy]-1-oxo-3,6,9,12-tetraoxatetradec-1-yl]-3-methyl-L-valyl-4-hydroxy-N-[[4-(4-methyl-5-thiazolyl)phenyl]methyl]-, (4R)-; PROTAC_RIPK2
    • Properties
      • Boiling Point
        1196.5±65.0°C at 760 Torr
        Density
        1.315±0.06 g/cm3 (Predicted)
        InChI Key
        RIEGJNXDHULIKM-GPPJZCFZSA-N
        InChI
        InChI=1S/C52H65N7O11S3/c1-33-47(72-31-55-33)35-10-8-34(9-11-35)28-54-49(62)42-25-37(60)29-59(42)50(63)48(51(2,3)4)58-46(61)30-69-21-20-67-17-16-66-18-19-68-22-23-70-43-27-40-38(26-45(43)73(64,65)52(5,6)7)39(14-15-53-40)57-36-12-13-44-41(24-36)56-32-71-44/h8-15,24,26-27,31-32,37,42,48,60H,16-23,25,28-30H2,1-7H3,(H,53,57)(H,54,62)(H,58,61)/t37-,42+,48-/m1/s1
        Canonical SMILES
        CC1=C(SC=N1)C2=CC=C(C=C2)CNC(=O)C3CC(CN3C(=O)C(C(C)(C)C)NC(=O)COCCOCCOCCOCCOC4=CC5=NC=CC(=C5C=C4S(=O)(=O)C(C)(C)C)NC6=CC7=C(C=C6)SC=N7)O
    • Reference Reading
      • 1. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2.
        Mares, A., Miah, A.H., Smith, I.E., Rackham, M., Thawani, A.R., Cryan, J., Haile, P.A., Votta, B.J., Beal, A.M., Capriotti, C. and Reilly, M.A., 2020. Communications biology, 3(1), pp.1-13.
        Proteolysis-Targeting Chimeras (PROTACs) are heterobifunctional small-molecules that can promote the rapid and selective proteasome-mediated degradation of intracellular proteins through the recruitment of E3 ligase complexes to non-native protein substrates. The catalytic mechanism of action of PROTACs represents an exciting new modality in drug discovery that offers several potential advantages over traditional small-molecule inhibitors, including the potential to deliver pharmacodynamic (PD) efficacy which extends beyond the detectable pharmacokinetic (PK) presence of the PROTAC, driven by the synthesis rate of the protein. Herein we report the identification and development of PROTACs that selectively degrade Receptor-Interacting Serine/Threonine Protein Kinase 2 (RIPK2) and demonstrate in vivo degradation of endogenous RIPK2 in rats at low doses and extended PD that persists in the absence of detectable compound. This disconnect between PK and PD, when coupled with low nanomolar potency, offers the potential for low human doses and infrequent dosing regimens with PROTAC medicines.
        2. Catalytic in vivo protein knockdown by small-molecule PROTACs.
        Bondeson, D.P., Mares, A., Smith, I.E., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L. and Zinn, N., 2015. Nature chemical biology, 11(8), pp.611-617.
        The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.
Bio Calculators
Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g
Related Products
BOC Sciences Support

Please contact us with any specific requirements and we will get back to you as soon as possible.


  • Verification code

We invite you to contact us at or through our contact form above for more information about our services and products.

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Inquiry Basket